Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics)
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



PFMT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics), 2018, Issue 4(37), Pages 62–65 (Mi pfmt605)  

MATHEMATICS

On a class of systems of second order differential equations without mobile critical features

T. N. Vankova, L. V. Detchenya, V. M. Petsevich, A. O. Seliverstova

Y. Kupala Grodno State University
References:
Abstract: Necessary and sufficient conditions for the system under investigation to belong to the Painlevé type system are obtained.
Keywords: system of the ordinary differential equations, Painlevé property, movable critical singularities, method of small parameter.
Received: 15.06.2018
Document Type: Article
UDC: 517.925
Language: Russian
Citation: T. N. Vankova, L. V. Detchenya, V. M. Petsevich, A. O. Seliverstova, “On a class of systems of second order differential equations without mobile critical features”, PFMT, 2018, no. 4(37), 62–65
Citation in format AMSBIB
\Bibitem{VanDetPec18}
\by T.~N.~Vankova, L.~V.~Detchenya, V.~M.~Petsevich, A.~O.~Seliverstova
\paper On a class of systems of second order differential equations without mobile critical features
\jour PFMT
\yr 2018
\issue 4(37)
\pages 62--65
\mathnet{http://mi.mathnet.ru/pfmt605}
Linking options:
  • https://www.mathnet.ru/eng/pfmt605
  • https://www.mathnet.ru/eng/pfmt/y2018/i4/p62
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы физики, математики и техники
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024