Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics)
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



PFMT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics), 2018, Issue 3(36), Pages 84–86 (Mi pfmt591)  

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

Finite groups with nilpotent subgroups of odd order

V. N. Tyutyanova, V. P. Bychkovb

a International University «MITSO», Gomel
b F. Scorina Gomel State University
Full-text PDF (307 kB) Citations (1)
References:
Abstract: Composition factors of finite groups in which each subgroup odd order is nilpotent were defined.
Keywords: finite group, simple non-abelian group, group Schmidt.
Received: 20.06.2018
Document Type: Article
UDC: 512.542
Language: Russian
Citation: V. N. Tyutyanov, V. P. Bychkov, “Finite groups with nilpotent subgroups of odd order”, PFMT, 2018, no. 3(36), 84–86
Citation in format AMSBIB
\Bibitem{TyuByc18}
\by V.~N.~Tyutyanov, V.~P.~Bychkov
\paper Finite groups with nilpotent subgroups of odd order
\jour PFMT
\yr 2018
\issue 3(36)
\pages 84--86
\mathnet{http://mi.mathnet.ru/pfmt591}
Linking options:
  • https://www.mathnet.ru/eng/pfmt591
  • https://www.mathnet.ru/eng/pfmt/y2018/i3/p84
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы физики, математики и техники
    Statistics & downloads:
    Abstract page:213
    Full-text PDF :60
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024