Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics)
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



PFMT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics), 2012, Issue 3(12), Pages 74–77 (Mi pfmt52)  

MATHEMATICS

Finite groups with given systems of quasipermutable subgroups

V. A. Kovaleva, Zh. Xiaoyu

F. Scorina Gomel State University, Gomel
References:
Abstract: Let $G$ be a finite group. A subgroup $A$ of $G$ is said to be quasipermutable in $G$ if A either covers or avoids every maximal pair $(K,H)$ of $G$. We study the finite groups with given systems of quasipermutable subgroups.
Keywords: finite group, maximal pair, (weakly) quasipermutable subgroup, generalized Fitting subgroup, $p$-nilpotent group, $\mathcal{U}$-hypercentre.
Received: 17.05.2012
Document Type: Article
UDC: 512.542
Language: English
Citation: V. A. Kovaleva, Zh. Xiaoyu, “Finite groups with given systems of quasipermutable subgroups”, PFMT, 2012, no. 3(12), 74–77
Citation in format AMSBIB
\Bibitem{KovXia12}
\by V.~A.~Kovaleva, Zh.~Xiaoyu
\paper Finite groups with given systems of quasipermutable subgroups
\jour PFMT
\yr 2012
\issue 3(12)
\pages 74--77
\mathnet{http://mi.mathnet.ru/pfmt52}
Linking options:
  • https://www.mathnet.ru/eng/pfmt52
  • https://www.mathnet.ru/eng/pfmt/y2012/i3/p74
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы физики, математики и техники
    Statistics & downloads:
    Abstract page:273
    Full-text PDF :83
    References:61
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024