|
Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics), 2017, Issue 2(31), Pages 69–74
(Mi pfmt505)
|
|
|
|
MATHEMATICS
Asymptotics of Hermite–Padé degenerate hypergeometric functions
M. V. Sidortsov, A. A. Drapeza, A. P. Starovoitov F. Sсorina Gomel State University
Abstract:
The asymptotic behavior of diagonal Hermite–Padé polynomials and diagonal Hermite–Padé approximations of type II for
the system {1F1(1,γ;λjz)}kj=1, consisting of degenerate hypergeometric functions in which while the rest {λj}kj=1 are the roots of
the equation λk=1, γ — is a complex number belonging to the set C∖{0,−1,−2,…} was stated. The theorems complement
known results of H. Padé, D. Braess, A.I. Aptekarev, H. Stahl, F. Wielonsky, W. Van Assche, A. B. J. Kuijlaars, A.P. Starovoitov,
obtained for the case, where the {λp}kp=0 — different real numbers.
Keywords:
Hermite integrals, Hermite–Padé polynomials, Hermite–Padé approximations, asymptotic equality, degenerate hypergeometric functions.
Received: 09.03.2017
Citation:
M. V. Sidortsov, A. A. Drapeza, A. P. Starovoitov, “Asymptotics of Hermite–Padé degenerate hypergeometric functions”, PFMT, 2017, no. 2(31), 69–74
Linking options:
https://www.mathnet.ru/eng/pfmt505 https://www.mathnet.ru/eng/pfmt/y2017/i2/p69
|
Statistics & downloads: |
Abstract page: | 221 | Full-text PDF : | 48 | References: | 42 |
|