Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics)
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



PFMT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics), 2012, Issue 2(11), Pages 95–98 (Mi pfmt39)  

MATHEMATICS

Simple non abelian group with $D_\pi$ Schmidt subgroups

V. N. Tyutyanova, P. V. Bychkovb

a International Institute of Labor and Social Relations, Gomel
b F. Scorina Gomel State University, Gomel
References:
Abstract: Let $G$ be a finite simple group, $S$ be its Hall Schmidt $\pi$-subgroup. If $2\in\pi$ then $G$ is not a $D_\pi$-group. If $2\notin\pi$ and $G\notin\{A_n(q),^2 A_n(q)\}$ then $G$ is a $D_\pi$-group.
Keywords: group, subgroup, simple group, Hall Schmidt $\pi$-subgroup, $D_\pi$-group.
Received: 26.01.2012
Document Type: Article
UDC: 512.542
Language: Russian
Citation: V. N. Tyutyanov, P. V. Bychkov, “Simple non abelian group with $D_\pi$ Schmidt subgroups”, PFMT, 2012, no. 2(11), 95–98
Citation in format AMSBIB
\Bibitem{TyuByc12}
\by V.~N.~Tyutyanov, P.~V.~Bychkov
\paper Simple non abelian group with $D_\pi$ Schmidt subgroups
\jour PFMT
\yr 2012
\issue 2(11)
\pages 95--98
\mathnet{http://mi.mathnet.ru/pfmt39}
Linking options:
  • https://www.mathnet.ru/eng/pfmt39
  • https://www.mathnet.ru/eng/pfmt/y2012/i2/p95
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы физики, математики и техники
    Statistics & downloads:
    Abstract page:248
    Full-text PDF :86
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024