Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics)
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



PFMT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics), 2015, Issue 1(22), Pages 66–71 (Mi pfmt359)  

MATHEMATICS

On $\mathfrak{U}\Phi$-hypercentrally embedded subgroups of finite groups

V. A. Vasilyev

F. Scorina Gomel State University, Gomel, Belarus
References:
Abstract: A subgroup $M$ of a group $G$ is a modular subgroup in $G$ if the following conditions are true:
  • $\langle X, M\cap Z\rangle=\langle X, M\rangle\cap Z$ for all $X\leqslant G$, $Z\leqslant G$ with $X\leqslant Z$, and
  • $\langle M, Y\cap Z\rangle=\langle M, Y\rangle\cap Z$ for all $Y\leqslant G$, $Z\leqslant G$ with $M\leqslant Z$.
Conditions for $\mathfrak{U}\Phi$-embedding of hypercentral subgroups of finite groups with given modular primary subgroups are found.
Keywords: finite group, modular subgroup, Sylow $p$-subgroup, $\mathfrak{U}\Phi$-hypercentre.
Received: 23.07.2014
Document Type: Article
UDC: 512.542
Language: Russian
Citation: V. A. Vasilyev, “On $\mathfrak{U}\Phi$-hypercentrally embedded subgroups of finite groups”, PFMT, 2015, no. 1(22), 66–71
Citation in format AMSBIB
\Bibitem{Vas15}
\by V.~A.~Vasilyev
\paper On $\mathfrak{U}\Phi$-hypercentrally embedded subgroups of finite groups
\jour PFMT
\yr 2015
\issue 1(22)
\pages 66--71
\mathnet{http://mi.mathnet.ru/pfmt359}
Linking options:
  • https://www.mathnet.ru/eng/pfmt359
  • https://www.mathnet.ru/eng/pfmt/y2015/i1/p66
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы физики, математики и техники
    Statistics & downloads:
    Abstract page:296
    Full-text PDF :158
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024