Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics)
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



PFMT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics), 2014, Issue 3(20), Pages 58–60 (Mi pfmt323)  

MATHEMATICS

Dependence of the derived $p$-length of a $p$-solvable group on the order of its Sylow $p$-subgroup

D. V. Gritsuk

F. Scorina Gomel State University, Gomel, Belarus
References:
Abstract: It is proved that the derived $p$-length $l_p^a(G)$ of the $p$-solvable group $G$ in which the Sylow $p$-subgroup has order $p^n$ is at most $1+\frac n2$ and if $p\not\in\{2,3\}$ then $l_p^a(G)\leqslant\frac{n+1}2$.
Keywords: finite group, $p$-solvable group, Sylow subgroup, derived $p$-length.
Received: 15.08.2014
Document Type: Article
UDC: 512.542
Language: Russian
Citation: D. V. Gritsuk, “Dependence of the derived $p$-length of a $p$-solvable group on the order of its Sylow $p$-subgroup”, PFMT, 2014, no. 3(20), 58–60
Citation in format AMSBIB
\Bibitem{Gri14}
\by D.~V.~Gritsuk
\paper Dependence of the derived $p$-length of a $p$-solvable group on the order of its Sylow $p$-subgroup
\jour PFMT
\yr 2014
\issue 3(20)
\pages 58--60
\mathnet{http://mi.mathnet.ru/pfmt323}
Linking options:
  • https://www.mathnet.ru/eng/pfmt323
  • https://www.mathnet.ru/eng/pfmt/y2014/i3/p58
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы физики, математики и техники
    Statistics & downloads:
    Abstract page:216
    Full-text PDF :63
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024