Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics)
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



PFMT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics), 2014, Issue 3(20), Pages 7–12 (Mi pfmt313)  

PHYSICS

The covariant representation spin polarizability of the nucleon

V.V.Andreev, O. M. Deryuzhkova, N. V. Maksimenko

F. Scorina Gomel State University, Gomel, Belarus
References:
Abstract: The option of relativistic-invariant definition of spin polarizability on the basis of covariant creation of the induced dipolar moments and phenomenological effective Lagrangian interactions of an electromagnetic field with these moments is offered.
Keywords: polarizability, Lagrangian, Compton scattering.
Received: 27.06.2014
Document Type: Article
UDC: 539.12
Language: Russian
Citation: V.V.Andreev, O. M. Deryuzhkova, N. V. Maksimenko, “The covariant representation spin polarizability of the nucleon”, PFMT, 2014, no. 3(20), 7–12
Citation in format AMSBIB
\Bibitem{AndDerMak14}
\by V.V.Andreev, O.~M.~Deryuzhkova, N.~V.~Maksimenko
\paper The covariant representation spin polarizability of the nucleon
\jour PFMT
\yr 2014
\issue 3(20)
\pages 7--12
\mathnet{http://mi.mathnet.ru/pfmt313}
Linking options:
  • https://www.mathnet.ru/eng/pfmt313
  • https://www.mathnet.ru/eng/pfmt/y2014/i3/p7
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы физики, математики и техники
    Statistics & downloads:
    Abstract page:224
    Full-text PDF :78
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024