Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics)
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



PFMT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics), 2010, Issue 1(2), Pages 28–30 (Mi pfmt154)  

MATHEMATICS

On $\mathcal{U}\Phi$-hypercentre of finite groups

V. A. Kovaleva, A. N. Skiba

F.  Skorina Gomel State University, Gomel
References:
Abstract: The product of all normal subgroups of $G$ whose all non-Frattini $G$-chief factors are cyclic is called the $\mathcal{U}\Phi$-hypercentre of $G$. The following theorem is proved.
Theorem. Let $X \le E$ be soluble normal subgroups of $G$. Suppose that every maximal subgroup of every Sylow subgroup of $X$ conditionally covers or avoids each maximal pair $(M,G)$, where $MX = G$. If $X$ is either $E$ or $F(E)$, then. $E \le Z_{\mathcal{U}\Phi}(G)$.
Keywords: $\mathcal{U}\Phi$-hypercentre, supersoluble group, maximal pair, (conditionally) cover-avoidance property of subgroups, CAP-subgroup.
Received: 27.01.2010
Document Type: Article
UDC: 512.542
Language: Russian
Citation: V. A. Kovaleva, A. N. Skiba, “On $\mathcal{U}\Phi$-hypercentre of finite groups”, PFMT, 2010, no. 1(2), 28–30
Citation in format AMSBIB
\Bibitem{KovSki10}
\by V.~A.~Kovaleva, A.~N.~Skiba
\paper On $\mathcal{U}\Phi$-hypercentre of finite groups
\jour PFMT
\yr 2010
\issue 1(2)
\pages 28--30
\mathnet{http://mi.mathnet.ru/pfmt154}
Linking options:
  • https://www.mathnet.ru/eng/pfmt154
  • https://www.mathnet.ru/eng/pfmt/y2010/i1/p28
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы физики, математики и техники
    Statistics & downloads:
    Abstract page:142
    Full-text PDF :69
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024