Markov chains; central limit theorem; branching processes; probability and moment inequalities; concentration functions; self-normalized statistics; distributions in linear spaces.
Markov chains.
Large deviations.
Probability inequalities.
Boundary problems.
Branching processes.
Infinite-dimensional distributions.
Martingales.
Biography
In 1957 Sergei Nagaev applied the spectral theory of linear operators in a Banach space for the asymptotic analysis of Markov chains.
1958 - dissertation "Some limit theorems for homogeneous Markov chains", Tashkent State University. 1963 - dissertation of the doctor of physical and mathematical sciences "Limit theorems for Markov processes with discrete time", Institute of Mathematics, Academy of Sciences of the Uzbek SSR, Tashkent.
1967 - Professor in Theory of Probability and Mathematical Statistics, Novosibirsk State University.
1957-1959 - Assistant of the Department of Theory of Probability and Mathematical Statistics, Tashkent State University.
1964-1977 - Professor, doctor of physical and mathematical sciences, Department of Probability Theory and Mathematical Statistics, Novosibirsk State University. At present, he is the Chief Researcher at the Sobolev Institute of Mathematics, Novosibirsk.
His research S.V. Nagaev leads in several directions. The history of these studies, beginning in 1957, the results obtained and their connection with the studies of other authors are described in his seven brief essays:
S. V. Nagaev, “An inversion formula for a recurrent Markov chain”, Sib. Èlektron. Mat. Izv., 21:1 (2024), 360–362
2022
2.
S. V. Nagaev, “Letters to the Editors”, Theory Probab. Appl., 67:3 (2022), 498
2021
3.
Nagaev S.V., “An Estimate for the Sum of the Spitzer Series and Its Generalization
Read More: https://epubs.siam.org/doi/10.1137/S0040585X97T990277”, Theory of Probability & Its Applications, 66:1 (2021), 89–104
4.
S. V. Nagaev, “An alternative method of the proof of the ergodic theorem for general Markov chains”, Theory Probab. Appl., 66:3 (2021), 364–375
5.
S. V. Nagaev, “On the accuracy of approximation of the binomial distribution by the Poisson law”, Mat. Tr., 24:2 (2021), 122–149
6.
Nagaev S.V., Chebotarev V.I., “On approximation of the tails of the binomial distribution with these of the poisson law”, Mathematics, 9:8 (2021)
Anatolii Zolotukhin Sergei Nagaev Vladimir Chebotarev, “On a bound of the absolute constant in the Berry–Esseen inequality for i.i.d. Bernoulli random variables”, Modern Stochastics: Theory and Applications, 5:3 (2018), 385–410
S. V. Nagaev, “The Berry–Esseen Bound for General Markov Chains”, Journal of Mathematical Sciences, 234:6 (2018), 829–846
10.
S. V. Nagaev, V. I. Chebotarev, “On Large Deviations for Sums of i.i.d. Bernoulli Random Variables”, Journal of Mathematical Sciences, 234:6 (2018), 816–828
S. V. Nagaev, “The spectral method and the central limit theorem for general Markov chains”, Izvestiya Mathematics, 81:6 (2017), 1168–1211
12.
S. V. Nagaev, V. I. Chebotarev, “On large deviation probabilities for the binomial distribution in case of the Poisson approximation”, Matematika v sovremennom mire., Mezhdunarodnaya konferentsiya, posvyaschennaya 60-letiyu Instituta matematiki im. S. L. Soboleva ((Novosibirsk, 14-19 avgusta 2017 g.)), eds. G. V. Demidenko, IM SO RAN, 2017, 372
13.
Nagaev S. V., “The Berry–Esseen bound for general Markov chains”, Matematika v sovremennom mire (Mezhdunarodnaya konferentsiya, posvyaschennaya 60-letiyu Instituta matematiki im. S. L. Soboleva), (Novosibirsk, 14-19 avgusta 2017 g.), Izd.-vo Instituta matematiki, Novosibirsk, 2017, 371
14.
A. Ya. Zolotukhin, S.V. Nagaev, V.I. Chebotarev, “On computing the absolute constant in the Berry—Esseen inequality for two-point distributions”, Proceedings of the International Conference “Analytical and Computational Methods in Probability Theory” (Moscow, Russia, October 23-27, 2017), eds. A. V. Lebedev, Moscow: Peoples friendship University of Russia, 2017, 695-699
2016
15.
S. V. Nagaev, V. I. Chebotarev, “On bounds for large deviations probabilities for the binomial distribution”, Obozrenie prikladnoi i promyshlennoi matematiki, 23:2 (2016) , 151-152 pp.
16.
Nagaev S. V., “The Berry-Esseen bounds for general Markov chains”, Obozrenie prikladnoi i promyshlennoi matematiki, 23:2 (2016) , 150-151 pp.
17.
Sergei Nagaev, “The Analytical Approach to Recurrent Markov Chains Alternative to the Splitting Method and Its Applications”, 2nd International Symposium on Stochastic Models in Reliability Engineering, Life Science, and Operations Management, SMRLO 2016, Proceedings (Beer Sheva, Israel; February 15 - 18, 2016), eds. Frenkel and Anatoly Lisnianski, Institute of Electrical and Electronics Engineers Inc. (IEEE), 2016, 251-253ieeexplore.ieee.org/document/7433124
Nagaev, S.V., Chebotarev, V.I., Zolotukhin, A.Y., “A Non-Uniform Bound of the Remainder Term in the Central Limit Theorem for Bernoulli Random Variables”, Journal of Mathematical Sciences, 214 (2016), 83-100
T. V. Lazovskaya, S. V. Nagaev, “Problems in Calculating Moments and Distribution Functions of Ladder Heights”, Journal of Mathematical Sciences, 218:2 (2016), 195–207
2015
21.
S. V. Nagaev, “The spectral method and ergodic theorems for general Markov chains”, Izv. Math., 79:2 (2015), 311–345
22.
S.V. Nagaev, , A. Zolotukhin, V.I. Chebotarev, “Solution to one computational problem, related to the gauss approximation for the binomial distribution”, Materials of the 3rd All-Russian Scientific and Practical conf.: Information technology and high-performance computing. (Khabarovsk, June 30-July 4, 2015), eds. A. I. Mazur, A. L. Verkhoturov, Pacific State University, Khabarovsk, 2015, 114-117
23.
Nagaev S.V., “The spectral method and the central limit theorem for general Markov chains”, Doklady Mathematics, 91:1 (2015), 56-59
24.
Nagaev, S.V., “Probabilistic inequalities for the galton–watson processes”, Theory of Probability and its Applications, 59:4 (2015), 611-640
S. V. Nagaev, “Local renewal theorems in the absence of an expectation”, Theory Probab. Appl., 59:3 (2015), 388–414
2014
27.
Nagaev S.V., Chebotarev V. I., Zolotukhin A. Ya., “Odna neravnomernaya otsenka v integralnoi teoreme Muavra-Laplasa i ee primenenie”, XXXVIII Dalnevostochnaya matematicheskaya shkola-seminar imeni akademika E. V. Zolotova (1 - 5 sentyabrya 2014 g., Vladivostok), IAPU DVO RAN, Vladivostok, 2014, 72–74
28.
S. V. Nagaev, “The spectral method and the central limit theorem for the general Markov chains”, Proceedings of the International Congress of Mathematicians, 4 vol. (August 13 - 21, 2014 Coex , Seoul , Korea), Kyung Moon SA, Seoul, 2014, 424
29.
Chebotarëv, V. I., Nagaev, S. V., Zolotukhin Anatoly, “On a non-uniform bound of the normal approximation for the binomial distribution and its application”, Proceedings of the International Congress of Mathematicians, 4 vol. (August 13 - 21, 2014 Coex , Seoul , Korea), Kyung Moon SA, Seoul, 2014, 2014, 413-414
30.
Zolotukhin A. Ya., Nagaev S. V., Chebotarev V. I., “On a non-uniform bound of the remainder term in central limit theorem for Bernoulli distributions”, XXXII International Seminar on Stability Problems for Stochastic Models, Book of Abstracts (16 - 21 June, 2014, Trondheim, Norway.), Institute of Informatics Problems, RAS, Moscow, 2014, 86 - 87
31.
Lazovskaya, T.V., Nagaev, S.V., “Problems in calculating of the moments and the distribution function of the ladder height”, XXXII International Seminar on Stability Problems for Stochastic Models, Book of Abstracts (16 - 21 June, 2014, Trondheim, Norway), Institute of Informatics Problems, RAS, Moscow, 2014, 62 - 63
32.
S.V. Nagaev, “The extension of the spectral method to the Harris Markov chains”, XXXII International Seminar on Stability Problems for Stochastic Models Book of Abstracts (16 - 21 June, 2014, Trondheim, Norway. Moscow, Institute of Informatics Problems, RAS), 2014, 84-85
2015
33.
S. V. Nagaev, “Probability inequalities for Galton–Watson processes”, Theory Probab. Appl., 59:4 (2015), 611–640
2013
34.
Nagaev S. V., “The ergodic theorems for Markov chains with an arbitrary phase space”, Doklady Mathematics, 88:3 (2013) , 684–686 pp.
35.
Nagaev S.V., Lazovskaya T., “O problemakh priblizhennogo vychisleniya momentov i vosstanovleniya funktsii raspredeleniya verkhnei lestnichnoi vysoty”, XXXVII Dalnevostochnaya matematicheskaya shkola-seminar imeni akademika E. V. Zolotova, sb. dokl. (08 sentyabrya – 14 sentyabrya 2013 g., Vladivostok), Dalnauka, Vladivostok, 2013, 128–132
36.
S.V. Nagaev, A. Ya. Zolotukhin, V.I. Chebotarev, “One computational problem associated with the Gaussian approximation to the binomial distribution”, Informatica i sistemy upravleniya, 38:4 (2013), 16–18
37.
Nagaev S. V., ““The ergodic theorems for Markov chains with an arbitrary phase space”, Doklady Mathematics, 88:3 (2013), 684–686
2012
38.
Nagaev S.V., “Renewal theorems in the case of attraction to the stable law with characteristic exponent smaller than unity”, Annales Mathematicae et Informaticae, 39 (2012) , 18 pp.
39.
Nagaev, S.V., “The renewal theorem in the absence of power moments”, Theory of Probability and its Applications, 56:1 (2012), 166-175
Nagaev, S.V., Chebotarev V. I., “On the bound of proximity of the binomial distribution to the normal one”, Theory of Probability and its Applications, 56:2 (2012), 213-239
S. V. Nagaev, Renewal theorems in the case of attraction to the stable law with characteristic exponent smaller than unity, Preprint 2011/272, Sobolev Institute of Mathematics, Novosibirsk, 2011 , 19 pp., (In Russian)
45.
Nagaev S.V., Chebotarev V.I., “Ob otsenke blizosti binomialnogo raspredeleniya k normalnomu”, Doklady Akademii nauk, 436:1 (2011), 26-28
46.
Nagaev, S.V., Chebotarev V. I., “On the bound of proximity of the binomial distribution to the normal one”, Doklady Mathematics, 83:1 (2011), 19-21
S.V. Nagaev, V.I. Chebotarev, “On precise bound of convergence rate in the integral Moivre-Laplace theorem”, XXXV Far Eastern Mathematical School-Seminar behalf of Academician E. V. Zolotov, Reports. [Electronic resource]. -, 2010, 908 pp.; volume 646 Mb; 1 CD-ROM. . P. 122-128. (In Russian) (31 Aug. - 5 Sept. 2010, Russia), ISBN 978-5-7442-1500-2, 646, IAPU DVO RAN, Vladivostok, 2010, 111-117
50.
S.V. Nagaev, A.S. Kondrik, K. V. Mikhaylov, V.I. Chebotarev, “On computation of error in the integral Moivre-Laplace theorem”, XXXV Far-Eastern Mathematical School-Seminar behalf of Academician E. V. Zolotov, Reports. [Electronic resource]. volume 646 Mb; 1 CD-ROM. ISBN 978-5-7442-1500-2. (In Russian) (31 Aug. -5 Sept. 2010, Vladivostok), IAPU DVO RAN, Vladivostok, 2010, 111-117
S.V. Nagaev, V.I. Chebotarev, On the bound of closeness of the bianomial distribution to the normal one, Research Report 2009/142, Computing Centre FEB RAS, Khabarovsk, 2009 , 47 pp.
S. V. Nagaev, V. I. Vakhtel, “On sums of independent random variables without power moments”, Siberian Mathematical Journal, 49:6 (2008), 1091–1100
57.
Sergey V. Nagaev, “Asymptotic formulas for probabilities of large deviations of ladder heights”, Theory Stoch. Process., 14(30):1 (2008), 100–116dspace.nbuv.gov.ua/handle/123456789/4541
58.
S.V. Nagaev, New approach to the analysis of large deviations of stairs ledder, Preprint, IM SO RAN, Novosibirsk, 2008 , 25 pp.
59.
Nagaev, Sergei Viktorovich, “OTsENKI VEROYaTNOSTEI BOLShIKh UKLONENII DLYa PROTsESSOV GALTONA- VATSONA”, Obozrenie prikladnoi i promyshlennoi matematiki, 15:4 (2008), 753-754.
60.
Nagaev S.V., “Exact expressions for moments of ladder heights”, Doklady Mathematics, 78:3 (2008), 916-919
Nagaev S.V., “Formula for the Laplace transform of the projection of a distribution on the positive half-line and some of its applications”, Doklady Mathematics, 76:3 (2007), 872-875
63.
S.V. Nagaev, V.I., Chebotarev, “Estimation of the Edgeworth expansion terms in Hilbert space and one F. Gotzes conjecture”, International J. of Statistical Sciences, 2007, (Special Issue, no. 6, 109-126
64.
Nagaev S. V., “On probability and moment inequalities for supermartingales and martingales”, Acta Applicandae Mathematicae, 97 (2007), 151-162
Nagaev, S.V., Vakhtel, V.I., “On sums of independent random variables without power moments”, Doklady Mathematics, 74:2 (2006), 683-685
69.
S.V. Nagaev, Formula for the Laplace transform of a projection of a distribution onto the positive semiaxes and some its applications, Preprint, IM SO RAN, Novosibirsk, 2006 , 19 pp.
70.
Nagaev, S. V.; Vakhtel, V. I., “On sums of independent random variables without power moments”, DOKLADY MATHEMATICS, 74:2 (2006), 683-685https://link.springer.com/article/10.1134
71.
Nagaev, S.V., Vakhtel, V.I., “On the local limit theorem for a critical Galton-watson process”, Theory of Probability and its Applications, 50:3 (2006), 400-419http://math.nsc.ru/LBRT/g1/nagaev/files/e-7.pdf
Nagaev S. V., “On the best constants in the Burkholder type inequality for the product of independent random variables”, Prague Stochastics 2006, Proceedings of the joint session of 7th Prague Symposium on Asymptotic Statistics and 15th Prague Conference on Information Theory, Statistical Decision Functions and Random Processes (Prague, from August 21 to 25, 2006), Prague: Matfyzpress, 2006, 544-554
Kharchenko, V. P.; Nagaev, S. V.; Kukush, A. G.; Znakovskaya, E. A.; Dotsenko, S. I., “Determination of the size of a sample in a method for modeling rare events”, Cybernet. Systems Anal., 42:1 (2006), 65–74
V. P. KharchenkoS. V. NagaevA. G. KukushE. A. ZnakovskayaS. I. Dotsenko, “Determination of sample size in a rare event simulation method”, Cybernetics and Systems Analysis, 42:1 (2006)
76.
S. V. Nagaev, V. I. Vakhtel, “On the local limit theorem for critical Galton–Watson process”, Theory Probab. Appl., 50:3 (2006), 400–419
S.V. Nagaev, V.I., Chebotarev, “On the bound of the absolute constant in the Berry-Esseen inequality, II”, XXX Far-Eastern Mathematical School-Seminar behalf of Academician E. V. Zolotov, Abstracts, Khabarovsk, 2005, 35-37
S. V. Nagaev, “On large deviations of a self-normalized sum”, Theory Probab. Appl., 49:4 (2004), 704–713
81.
S.V. Nagaev, V.I. Chebotarev, On an absolute constant in the Berry-Esseen bound Research Report, 2004/78, Computing Centre FEB RAS, Khabarovsk, 2004 , 18 pp.
82.
S.V. Nagaev, V.I. Chebotarev, “On the bound of the absolute constant in the Berry-Esseen inequality, I.”, Far-Eastern Mathematical School-Seminar behalf of Academician E. V. Zolotov, Abstracts, Vladivostok, 2004, 16
A. K. Aleshkyavichene, S. V. Nagaev, “Transient phenomena in a random walk”, Theory Probab. Appl., 48:1 (2004), 1–18
2003
85.
S.V. Nagaev, V.I. Chebotarev, Estimation of terms of Edgeworth expansion in Hilbert space and one F. Goetzes conjecture, Research Report 2003/67, Computing Centre FEB RAS, Khabarovsk, 2003 , 17 pp.
86.
S.V. Nagaev, V.I. Chebotarev, “Estimation of the Edgeworth expansion terms in Hilbert space and a conjecture of F. Götze”, Far-Eastern Mathematical School-Seminar behalf of Academician E. V. Zolotov, Abstracts, Vladivostok, 2003, 11-13
87.
Nagaev S.V., “On probability and moment inequalities for supermartingales and martingales”, Acta Applicandae Mathematicae: An International Survey Journal on Applying Mathematics and Mathematical Applications, 79:1 (2003), 35-46
Nagaev, Sergei Viktorovich, On large deviations of self-normalized sum, Izd-vo In-ta matematiki, Novosibirsk, 2002 , 11 pp.
90.
Nagaev, Sergei Viktorovich, Veroyatnostnye neravenstva dlya kriticheskogo protsessa Galtona - Vatsona, Preprint / Ros. akad. nauk. Sib. otd-nie. In-t matematiki im. S. L. Soboleva, In-t matematiki im. S.L. Soboleva RAN, Novosibirsk, 2002 , 14 pp.
91.
Nagaev, Sergei Viktorovich, On large deviations of self-normalized sum, Preprint / Ros. akad. nauk. Sib. otd-nie. In-t matematiki im. S. L. Soboleva; 89, Izd-vo In-ta matematiki, Novosibirsk, 2002 , 11 pp.
92.
S. V. Nagaev, “Lower Bounds for Probabilities of Large Deviations of Sums of Independent Random Variables”, Theory Probab. Appl., 46:4 (2002), 728–735
Nagaev, S. V., “Lower bounds on large deviation probabilities for sums of independent random variables.”, Asymptotic methods in probability and statistics with applications (St. Petersburg, 1998), Stat. Ind. Technol., Birkhäuser Boston, Boston, MA, 2001, 277–295
95.
Nagaev S. V., “Threshold Phenomena in Random Walks”, Asymptotic Methods in Probability and Statistics with Applications. Statistics for Industry and Technology., 978-1-4612-0209-7, eds. Balakrishnan N., Ibragimov I.A., Nevzorov V.B. (eds), Birkhäuser, Boston, 2001, 465-485
96.
Nagaev, Sergei Viktorovich, On the Berry- Esseen bound for the self-normalized sum, Preprint / Ros. akad. nauk. Sib. otd-nie. In-t matematiki im. S. L. Soboleva; 82, Izd-vo In-ta matematiki im. S. L. Soboleva, Novosibirsk, 2001 , 39 pp.
97.
Kagan A., Nagaev S., “HOW MANY MOMENTS CAN BE ESTIMATED FROM A LARGE SAMPLE?”, Statistics & Probability Letters, 55:1 (2001), 99-105
Nagaev, Sergei Viktorovich, Ob otsenke tochnosti gaussovskoi approksimatsii v gilbertovom prostranstve, Preprint / Ros. akad. nauk. Dalnevost. otd-nie. Vychisl. tsentr; 2000/47, Vychisl. tsentr DVO RAN, Khabarovsk, 2000 , 58 pp.
1999
100.
S. V. Nagaev, L. V. Nedorezov, V. I. Vakhtel, “A probabilistic continuous-discrete model of the dynamics of the size of an isolated population”, Journal of Applied and Industrial Mathematics, 2:2 (1999), 147–152
101.
S.V. Nagaev, “Probability and moment inequalities for sums of dependent Banach space valued random variables”, XX International Seminar on Stability Problems for Stochastic Models, . Wydawnictwo uniwersytetu Marii Kurie-Sklodowskiej, Lublin, 1999. (Lublin Naleczow, 5-11 September, 1999):, Wydawnictwo Uniwersytetu Marii Curie-Sklodowskiej, Lublin, 1999, 125
102.
S.V. Nagaev, “On estimation of a coverage probability in a non-linear regression model”, VI All-Russian School-Colloq. on Stochastic Methods, Survey of Appl. and Industr. Mat. (Samara, August 5-12, 1999), 6, no. 1, 1999, 178-179
103.
Nagaev, S.V., Chebotarev, V.I., “On the Accuracy of Gaussian Approximation in Hilbert Space”, Acta Applicandae Mathematicae, 58:1 (1999), 189-215
Nagaev S.V., “The analytical approach to the harris recurrent markov chains and the berry-esseen bound”, Doklady Akademii Nauk, 359:5 (1998), 590-592
1999
105.
S. V. Nagaev, E. L. Presman, “On the iterated logarithm law in a control problem”, Theory Probab. Appl., 43:2 (1999), 288–293
1998
106.
Nagaev S.V., “Concentration functions and the accuracy of approximation by infinitely divisible laws in a Hilbert space”, DOKLADY AKADEMII NAUK, 57:2 (1998), 254-256
107.
Nagaev S.V., “An analytical approach to the Markov chains recursive in the sense of Harris, and the Berry-Esseen estimate”, Doklady Mathematics, 57:2 (1998), 264-266
108.
S.V. Nagaev, E.L.Presman, “On the law of iterated logarithm in one problem of control”, Probability theory and mathematical statistics : proceedings of the Seventh Vilnius Conference (1998), [in conjunction with the 22nd European Meeting of Statisticians] (Vilnius, Lithuania, 12-18 August, 1998), 466 p., eds. B Grigelionis, TEV, Vilnius, 1998
109.
S.V. Nagaev, “Probability inequalities for sums of dependent Banach space valued random variables”, International Congress of Mathematicians, ICM 1998. International Congress of Mathematicians Abstracts of Short Communications and Poster Sessions (Berlin, August 18-27, 1998), 263, Berlin, 1998
110.
S.V. Nagaev, “Lower bounds on large deviation probabilities for sums of independent random variables”, Intern. Conf. "Asympt. Methods in Probab. and Math. Stat." Dedicated to the Anniversary of the Chair of Probab. and Stat., Abstracts. Mezhdunarodnaya konferentsiya “Asimptoticheskie metody v teorii veroyatnostei i matematicheskoi statistike”, posvyaschennaya 50-letiyu obrazovaniya Kafedry teorii veroyatnostei i matematicheskoi statistiki Sankt-Peterburgskogo gosudarstvennogo universiteta (St. Petersburg University, June 24-28, 1998), St. Petersburg University, St. Peterburg, 1998, 186-190
111.
S.V. Nagaev, L.V. Nedorezov, V.I. Vakhtel, “Stokhasticheskaya model dinamiki izolirovannoi populyatsii”, Tretii Sibirskii kongress po prikladnoi i industrialnoi matematike (INPRIM-98), Tezisy, chast IV, IM SO RAN, Novosibirsk, 1998, 121
112.
S.V. Nagaev, V.I. Chebotarev, On accuracy of Gaussian approximation in Hilbert space, Preprint 98/32, Far-Eastern Branch, Computing Centre FEB RAS, Khabarovsk, 1998 , 3-48 pp.
S. V. Nagaev, “Probabilistic inequalities for sums of independent random variables in terms of truncated pseudomoments”, Theory Probab. Appl., 42:3 (1998), 520–528
S. V. Nagaev, S. S. Khodzhabagyan, “On an estimate for the concentration function of sums of independent random variables”, Theory Probab. Appl., 41:3 (1996), 560–578https://epubs.siam.org/doi/10.1137/S0040585X9797657X
117.
Nagaev, Sergei, “On accuracy of approximation in central limit theorem.”, Probability theory and mathematical statistics (St. Petersburg, 1993), Gordon and Breach, Amsterdam, 1996, 95–108
118.
S.V. Nagaev, “Some refinements of probability inequalities”, Mosc. Univ. Math. Bull, 51:6 (1996), 560-569
119.
S.V. Nagaev, “On the analytical approach to Harris Markov Chains”, Fourth World Cong. of the Bernoulli Society, Abstracts (Vienna, Austria, 1996, August 26-31), 1996, 346
1995
120.
S. V. Nagaev, “On a model of a random walk”, New Trends in Probability and Statistics, Proceed. Second Ukrainian-Hungarian Conference (Mukachevo, Ukraine, September 25-October 1, 1992), eds. M. Arato, M.I. Yadrenko, Teor. Veroyatnost. Matemat. Statist., Kiev, 1995, 223-226
121.
S.V. Nagaev, “The analitical approach to Markov chains satisfying the Harris condition and rates of convergence in limit theorems”, Abstr. of Japan-Russian Symp. Probab. and Math. Statist. (Tokyo), 1995, 68
122.
S.V. Nagaev, “The Berry-Esseen bound for Markov chains satisfying the Harris condition”, Abstr. Comm. XVII Seminar on Stability Problems of Stochastic Models. (Kazan, 19-26 June 1995), 1995, 27-28
1994
123.
Nagaev, S, “On accuracy of approximation with stable laws”, Probability theory and mathematical statistics : proceedings of the sixth Vilnius Conference (Vilnius, Lithuania, 28 June - 3 July, 1993), 6th Vilnius Conference on Probability Theory and Mathematics Statistics, eds. E. Gechauskas, Matematikas ir Informatikas Institutas, 1994, 591-604
Nagaev S.V., “The accuracy of approximation with stable laws”, Abstr. Comm. XVI Seminar on Stability Problems of Stochastic Models (Eger, Hungary, August 29-September), 1994, 52
1993
126.
A. V. Karpenko, S. V. Nagaev, “Limit theorems for the total number of descendants for the Galton–Watson branching process”, Theory Probab. Appl., 38:3 (1993), 433–455
127.
Nagaev, S.V., Kirsanov, G.A., “Heat conduction of the ″Karbotextim-V″ graphitized felt at high temperatures”, Teplofizika Vysokikh Temperatur, 31:1 (1993), 99-105
128.
S.V. Nagaev, “On estimaites of the rate of convergence in the CLT in a Hilbert space”, Workshop on Limit Theorems and Nonparametric Statistics, Abstracts of commun. (August 24 - 28, 1992), Universitat Bielefeld, 1993, 1-3
129.
Nagaev, S. V.; Chebotarëv, V. I., “On Edgeworth expansions in Hilbert space”, Siberian Advances in Mathematics, 3:3 (1993), 89–122
130.
S. V. Nagaev, V. I. Chebotarev, “On the Edgeworth expansion in a Hilbert space”, Trudy Inst. Mat. SO RAN, 20 (1993), 170–203
1992
131.
S.V. Nagaev, “Bounds for the rate of confergence in the ergodic theorem for homogeneous Markov chains”, Intern. Conf. dedicated to the memory of academishian M. P. Kravchuk, Abstracts (Kiev-Lutsk, 1992), IM, Kiev, 1992, 141
1991
132.
Nagaev, S. V.; Chebotarëv, V. I, “On the Bergström type asymptotic expansion in Hilbert space [translation of Trudy Inst. Mat. (Novosibirsk) 13 (1989), Asimptot. Analiz Raspred. Sluch. Protsess., 66–77; MR1037249].”, 66–77, Siberian Advances in Mathematics, 1, no. 2, 1991 , 130-145 pp.
133.
Nagaev S.V., “Ergodic Theorems for discrete-time random processes”, New trends in probability and statistics, Bakuriani Colloquium on Probability Theory and Mathematical Statistics 1990 (Bakuriani, Georgia, USSR, 24 February -4 March 1990), eds. Prohorov, Y. V., Mokslas, Vilnius, Lithuania, 1991, 190-197
134.
S.V. Nagaev, “Concentration functions and approximation with infinitely divisible laws in Hilbert space”, Comm. VI USSR - Japan Symp. Probab. Theory and Mat. Statist., Abstr. (Kiev, 1991), 1991, 108
1990
135.
Nagaev S.V., “On a new approach to the study of the distribution of a norm of a random element in Hilbert space”, Probability theory and mathematical statistics, Lietuvos TSR Mokslų akademija; Matematicheskiĭ institut im. V.A. Steklova.; Vilniaus Valstybinis V. Kapsuko vardo universitetas. (June 25-July 1, 1989), Mokslas ; Utrecht, The Netherlands : VSP, Vilnius, Lithuania:, 1990, 214-226
136.
S.V. Nagaev, V.I. Chebotarev, On Bergstrem expansion in Hilbert space, preprint, Far-Eastern Branch, Inst. Appl. Math., Khabarovsk, 1990 , 50 pp.
1989
137.
Nagaev S. V., “A Berry-Esseen type estimate for sums of Hilbert space valued random variables”, Siberian Mathematical Journal, 30:3 (1989), 413–423
138.
S. V. Nagaev, V. I. Chebotarev, On Edgeworth expansion in Hilbert space. Far-Eastern Branch USSR, Preprint Inst. Appl. Math. Far-Eastern Branch USSR, Vladivostok, 1989 , 1-62 pp.
139.
S.V. Nagaev, V. I. Chebotarev, “O razlozhenii Edzhvorta v gilbertovom prostranstve”, Pyataya Mezhdunarodnaya vilnyusskaya konferentsiya po teorii veroyatnostei i matematicheskoi statistike, Tezisy dokladov (Vilnyus, 26 iyulya - 1 iyulya 1989 g.), eds. E. Gechauskas, Matematikas ir Informatikas Institutas, Vilnyus, 1989, 81-82
140.
S.V. Nagaev, A.R. Karpenko, “Limit theorems for a total progeny in a Galton-Watson branching process”, Fifth International Vilnius conference on probability theory and mathematical statistics,, 4, Vilnius, 1989, 79-80 (to appear)
141.
S.V. Nagaev, “On a new approach to the study of the distribution of a norm of a random element in a Hilbert space”, Fifth International Vilnius conference on probability theory and mathematical statistics (Vilnius), 4, 1989, 77-78
142.
S.V. Nagaev, V.I. Chebotarev, On Edgeworth expansion in Hilbert space, Preprint, Far-Eastern Branch USSR, Inst. Appl. Math. Far-Eastern Branch USSR, Vladivostok, 1989 , 62 pp.
143.
S. V. Nagaev, “Ergodic theorems for homogeneous Markov chains”, Dokl. Math., 39:3 (1989), 483–486
144.
S. V. Nagaev, V. I. Chebotarev, “On an asymptotic expansion of Bergström type in a Hilbert space”, Trudy Inst. Mat. Sib. Otd. AN SSSR, 13 (1989), 66–77
145.
S. V. Nagaev, “An estimate of Berry–Esseen type for sums of random variables with values in Hilbert space”, Dokl. Math., 38:3 (1989), 476–477
1988
146.
S.V. Nagaev, On ergodic theory of homogenious Markov chains, Preprint. 57, Inst. Math. Ukrainian SSR Acad. Sci., 1988 , 3-21 pp.
147.
S.V. Nagaev, “An estimate of Berry-Esseen type for sums of random variables with values in Hilbert space”, Soviet Math. Dokl., 38:3 (1988), 476-477
1987
148.
Nagaev, S. V.; Chebotarëv, V. I., “Asymptotic expansions of the distributions of sums of i.i.d. Hilbert space valued random variables. Probability theory and mathematical statistics, Vol. II (Reviewer: M. Bhaskara Rao)”, Probability theory and mathematical statistics, Vol. II, VNU Sci. Press, Utrecht, 1987. ((Vilnius, 1985),), eds. (Reviewer: M. Bhaskara Rao), 1987, 357–363
149.
Nagaev, S. V.; Chebotarjev, V. I., “On asymptotic expansion for the distribution of the sum of independent identically distributed random variables taking values in Hilbert space. 693–696, VNU Sci. Press, Utrecht,”, Proceedings of the 1st World Congress of the Bernoulli Society, Vol. 1, VNU Sci. Press, Utrecht (Tashkent, 1986), VNU Sci. Press, Utrecht, 1987, 693–696
150.
S. V. Nagaev, V. I. Chebotarev, “On asymptotic expansion for the distribution of the sum of independent identically distributed random variables taking values in Hilbert space”, Proc. of the I World Congress of the Bernoulli Society, Tashkent, USSR (Tashkent, USSR, 8-14 September 1986), Mathematical Statistics and Probability. World Congress, eds. Yu A Prohorov; V V Sazonov, VNU Science Press, 1987, 693-696 [Íàãàåâ Ñ.Â., ×åáîòàðåâ Ñ.Â., Ïåðâûé Âñåìèðíûé êîíãðåññ Îáùåñòâà ìàòåìàòè÷åñêîé ñòàòèñòèêè è òåîðèè âåðîÿòíîñòåé èì. Áåðíóëëè, Òåç. äîêë. (15 èþëÿ - 20 àâã. 1986, Òàøêåíò),  íàäçàã.: ÀÍ ÑÑÑÐ, ÀÍ ÓçÑÑÐ, Íàóêà, Ìîñêâà, 1986]
151.
S.V. Nagaev, A.R. Karpenko, Limit theorems for a total progeny in a Galton —Watson branching process, Preprint 33, IM SB RAS, 1987 (to appear) , 36 pp.
152.
Nagaev S.V., “Probability inequalities for sums of independent random variables with values in a Banach space”, Siberian Mathematical Journal, 28:4 (1987), 652-664
1986
153.
Nagaev S.V., Chebotarev V. I., “A refinement of the error estimate of the normal approximation in a Hilbert space”, Siberian Mathematical Journal, 27:3 (1986) , 16 pp. https://link.springer.com/article/10.1007
154.
NAGAEV, SV, “ON THE RATE OF CONVERGENCE TO NORMAL LAW IN HILBERT SPACE”, THEORY OF PROBABILITY AND ITS APPLICATIONS, 30 (1986), 19-37
S.V. Nagaev, “Probability inequalities for sums of independent Banach-valued random variables”, Soviet Math. Dokl., 1986, 385-387
156.
S. V. Nagaev, “Veroyatnostnye neravenstva dlya summ nezavisimykh sluchainykh velichin so znacheniyami v banakhovom prostranstve”, Dokl. AN SSSR, 287:2 (1986), 284–286
157.
Nagaev S. V., “Probability-inequalities for sums of banach space-valued independent random-variables”, Doklady Akademii Nauk SSSR, 287:2 (1986), 284-286
158.
S. V. Nagaev, V. I. Chebotarev, “Refinement of an error estimate for normal approximation in a Hilbert space”, Siberian Math. J., 27:3 (1986), 434–450
NAGAEV, SV; ASADULLIN, MK, “One scheme of summing a random number of independent random-variables with the application to branching-processes with immigration”, Doklady Akademii nauk SSSR, 285:2 (1985), 293-296
161.
S.V. Nagaev, N.V. Gizbrecht, “A random walk scheme that describes the particle transport phenomenon”, Limit theorems of probability theory, Proc. Inst. Math. Sib. Branch USSR Acad. Sci., 5, 1985, 103-126
162.
S.V. Nagaev, M.Kh. Asadullin, “Ob odnoi skheme summirovaniya sluchainogo chisla nezavisimykh velichin s prilozheniem k vetvyaschimsya protsessam s immigratsiei”, Predelnye teoremy teorii veroyatnostei, sbornik statei, Tr. In-ta matematiki : / / AN SSSR, Sib. otd-nie. T. 5, ISSN JSSN 0208-0060, Trudy Instituta matematiki, 5, eds. Otv. red. A. A. Borovkov, Nauka, Sib. otd-nie, Novosibirsk, 1985, 96-103
163.
S.V. Nagaev, V.I. Chebotarev, “On accuracy of the Gaussian approximation for distributions of sums of independent Hilbert space valued random variables”, Pyataya Mezhdunarodnaya vilnyusskaya konferentsiya po teorii veroyatnostei i matematicheskoi statistike, tezisy dokladov (Vilnyus, 26 iyunya - 1 iyulya 1989 g.), 4, b.i., Vilnyus, 1985, 208-210
164.
Nagaev S.V., “Ob analiticheskikh metodakh v teorii tsepei Markova”, Chetvertaya Vilnyusskaya konferentsiya po teorii veroyatnostei i matematicheskoi statistike, Tezisy dokladov, 2, eds. E. Gechauskas, Institut matematiki i kibernetiki AN LitSSR, Vilnyus, 1985, 236-238
165.
V. Nagaev, V.I. Chebotarev, “A refinement of the error estimate of the normal approximation in a Hilbert space”, Comm. 19th School-Colloq. Probab. Theory and Mat. Statist.,, Abstr. (Bakuriani, 1985), 1985, 37
166.
S. V. Nagaev, M. Kh. Asadullin, “Ob odnoi skheme summirovaniya sluchainogo chisla nezavisimykh sluchainykh velichin s prilozheniem k vetvyaschimsya protsessam s immigratsiei”, Doklady Akademii nauk SSSR, 285:2 (1985), 293–296
167.
S. V. Nagaev, N. V. Gizbrekht, “A random walk scheme that describes the particle transport phenomenon”, Trudy Inst. Mat. Sib. Otd. AN SSSR, 5 (1985), 103–126
168.
S. V. Nagaev, M. Kh. Asadullin, “A scheme for summation of a random number of independent random variables with application to branching processes with immigration”, Trudy Inst. Mat. Sib. Otd. AN SSSR, 5 (1985), 96–103
1984
169.
S.V. Nagaev, V.I. Chebotarev, A refinement of the error estimate of a normal approximation in a Hilbert space, Preprint, IM SO RAN, Novosibirsk, 1984 , 46 pp.
170.
Nagaev, S.V., “BERRY-ESSEEN-TYPE ESTIMATES FOR SUMS OF HILBERT SPACE-VALUED RANDOM-VARIABLES”, DOKLADY AKADEMII NAUK SSSR, 276:6 (1984)
1985
171.
S. V. Nagaev, “Letter to the editors”, Theory Probab. Appl., 29:1 (1985), 197–198
1983
172.
S. V. Nagaev, “Probabilities of large deviations in Banach spaces”, Math. Notes, 34:2 (1983), 638–640
173.
Nagaev S.V., “On probabilities of large deviations for a Gaussian distribution in a banach-space”, Theory of Probability and its Applications, 27:2 (1983), 430-431
174.
Nagaev S.V., “On accuracy of normal approximation for the distribution of a sum of independent Hilbert space valued random variables”, Probability Theory and Mathematical Statistics (Tbilisi, USSR, August 23-29, 1982), Proceedings of the Fourth USSR - Japan Symposium, held at Tbilisi, USSR, August 23–29, 1982, 1021, eds. Prokhorov, J.V., Springer, 1983, 461-474http://www.bookmetrix.com/detail/book/2b65b2ed-742e-49a6-848e-b99814c58142#citations
Yu. G. Kosarev, S.V. Nagaev, “A characteristic property of a power function”, Vychisl. Sistemy, 99, Novosibirsk, 1983, 39-43
1984
176.
Nagaev, S.V., Chebotarev, V.I., “Dependence of the estimate of the rate of convergence to a normal law on the covariance operator - the case of non-identical distributions of terms”, Theory of Probability and its Applications, 28:3 (1984), 631-632
1983
177.
Nagaev, S.V., “On accuracy of normal approximation for distribution of sum of independent Hilbert space valued random variables”, LECTURE NOTES IN MATHEMATICS, 1021 (1983), 461-473
M. Kh. Asadullin, S. V. Nagaev, “Limit theorems for a critical branching process with immigration”, Math. Notes, 32:4 (1982), 750–757
179.
Nagaev S.V., “On distribution of linear functionals in finite-dimensional spaces of large dimension”, Doklady Akademii nauk SSSR, 265 (1982), 295
180.
S. V. Nagaev, “On the distribution of linear functionals in finite-dimensional spaces of large dimension”, Dokl. Akad. Nauk SSSR, 263:2 (1982), 295–297
181.
Nagaev, S.V., “AN ERGODIC THEOREM FOR HOMOGENEOUS MARKOV-CHAINS”, DOKLADY AKADEMII NAUK SSSR, 263:1 (1982), 27-30
182.
S. V. Nagaev, “Probability inequalities for sums of independent random variables with values in a Banach space”, Trudy Inst. Mat. Sib. Otd. AN SSSR, 1 (1982), 159–167
183.
S. V. Nagaev, “On the asymptotic behaviour of one-sided large deviation probabilities”, Theory Probab. Appl., 26:2 (1982), 362–366https://epubs.siam.org/doi/10.1137/1126035
1981
184.
NAGAEV, SV, “On an asymptotic behavior of a Wiener measure for a narrow-band”, Kartinki po zaprosu THEORY OF PROBABILITY AND ITS APPLICATIONSarchive.siam.org Theory of Probability and Its Applications, 26:3 (1981), 625-626
185.
S.V. Nagaev, “On a large deviation probabilities for the Gaussian distribution in a Banach space”, Izv. Akad. Nauk UzSSR. Ser. Fiz.-Mat. Nauk, 1981, no. 5, 18-21
186.
S.V. Nagaev, “Veroyatnostnye neravenstva v banakhovykh prostranstvakh”, Tretya Vilnyusskaya konferentsiya po teorii veroyatnostei i matematicheskoi statistike, Tezisy dokladov (22-27 iyunya 1981, Vilnyus), V nadzagol.: AN SSSR, AN LitSSR, Viln. gos. un-t im. V. Kapsukasa, 2, eds. E. Gechauskas, Institut matematiki i kibernetiki, Vilnyus, 1981, 75-76
187.
S.V. Nagaev, Gizbrekht N. V., “Ob odnoi skheme sluchainogo bluzhdaniya, opisyvayuschei perenos chastits”, III Vilnyusskaya konferentsiya po teor. veroyatn. i mat. stat., Tezisy dokladov, 2, eds. E. Gechauskas, Institut matematiki i kibernetiki AN LitSSR, Vilnyus, 1981, 130
188.
S.V. Nagaev, M.H. Asadullin, “Limit-theorems for a critical branching-process with immigration”, Theory of probability and its applications, 26:2 (1981), 417-419
1982
189.
S. V. Nagaev, L. V. Han, “Letter to the editors”, Theory Probab. Appl., 26:2 (1982), 434
1981
190.
S. V. Nagaev, L. V. Han, “Limit theorems for a critical Galton–Watson process with migration”, Theory Probab. Appl., 25:3 (1981), 514–525
1980
191.
S. V. Nagaev, “On the asymptotic behaviour of the Wiener measure of the narrow strip”, Third Working Conf. Stochastic Differential Systems, Abstr. (Visegrad (Hungary), Sept. 15–20, 1980), 1980, 55-56
1979
192.
Nagaev S. V., “Large deviations of sums of independent random variables”, Annals of Probability, 7:5 (1979), 745-789
S.V. Nagaev, V.I. Chebotarev, “On estimates of a convergence rate in the central limit theorem for random vectors taking values in l2”, Mathematical analysis and related topics, Trudy Inst. Mat., Nauka, Novosibirsk, 1978, 153-182
1977
194.
Kh. Batirov, D. V. Manevich, S. V. Nagaev, “The Esseen inequality for sums of a random number of differently distributed random variables”, Math. Notes, 22:1 (1977), 569–571
1978
195.
N. A. Volodin, S. V. Nagaev, “A remark on the strong law of large numbers”, Theory Probab. Appl., 22:4 (1978), 810–813
196.
S. V. Nagaev, I. F. Pinelis, “Some inequalities for the distributions of sums of independent random variables”, Theory Probab. Appl., 22:2 (1978), 248–256
1977
197.
S.V. Nagaev, I.F. Pinelis, “On large deviations for sums of independent Banach-valued random variables”, Abst. Comm. II Vilnius Conf. Probab. Theory and Math. Statist. Vilnius, 1977, 66-67
198.
S.V. Nagaev, V.I. Chebotarev, “Estimates of a convergence rate in the central limit theorem in the l2 in the case of independent coordinates”, II Vilnius Conf. on Probab. Theory and Math. Statist. Vilnius, 1 (1977), Abstr. Comm., 1977, 68-69
199.
S. V. Nagaev, M. S. Èppel, “On a local limit theorem for the sums of independent random variables”, Theory Probab. Appl., 21:2 (1977), 384–385
1976
200.
Nagaev S.V., “An estimate of the remainder term in multidimensional central limit theorem”, Proceedings of the Third Japan — USSR Symposium on Probability Theory - 1976, Springer Ser. Lecture Notes in Mathematics (Japan — USSR), 550, eds. Maruyama, G., Prokhorov, J.V., Springer, Berlin, 1976, 419-438https://link.springer.com/chapter/10.1007/BFb0077505{link.springer.com/chapter/10.1007/BFb0077505}
S.V. Nagaev, S.K. Sakojan, “On a bound for a probability of large deviations”, Limit Theorems and Mathematical Statistics, FAN, Tashkent, 1976, 132-140
1977
202.
S. V. Nagaev, “Letter to the editors”, Theory Probab. Appl., 21:4 (1977), 875
1976
203.
S. V. Nagaev, V. I. Rotar', “Letter to the editors”, Theory Probab. Appl., 21:1 (1976), 220
204.
S. V. Nagaev, N. A. Volodin, “On the strong law of large numbers”, Theory Probab. Appl., 20:3 (1976), 626–631
1975
205.
S. V. Nagaev, N. V. Vakhrushev, “An estimation of probabilites of large deviations for a critical Galton–Watson process”, Theory Probab. Appl., 20:1 (1975), 181-182
206.
S. V. Nagaev, “A limit theorem for branching processes with immigration”, Theory Probab. Appl., 20:1 (1975), 176–179
207.
Nagaev S. V., “Nekotorye predelnye teoremy teorii vosstanovleniya”, Teoriya veroyatnostei i ee primenenie, 20:2 (1975), 332–344
S.V. Nagaev, I. F. Pinelis, “Some estimates for large deviations and their application to strong law of large numbers”, 15:1 (1974) 153–158, Siberian Mathematical Journal, 15:1 (1974), 153–158https://link.springer.com/article/10.1007/BF00968324
210.
Nagaev S.V., “Transition phenomena for age-dependent branching processes with discrete time. I”, Siberian Mathematical Journal, 15:2 (1974), 261-281 (to appear)
211.
S. V. Nagaev, “Transition phenomena for age-dependent branching processes with discrete time. II”, Siberian Math. J., 15:3 (1974), 408–415
1973
212.
S. V. Nagaev, V. I. Rotar', “On strengthening of Lyapunov type estimates (the case when summands distributions are close to the normal one)”, Theory Probab. Appl., 18:1 (1973), 107–119
213.
Nagaev S. V., “State of a conduction electron in a crystal in the case of nonlocal interaction with elementary excitations”, Theoretical and Mathematical Physics, 14:1 (1973) , 67–74 pp. https://link.springer.com/article/10.1007/BF01035636
214.
Nagaev S.V., “Large deviations for sums of independent random variables”, Trans. Sixth Prague Conf. Inform. Theory. Statist. Decision Functions. Random Processes, Prague (Prague, 1973), Academy of Sciences, Prague, 1973, 657-674http://math.nsc.ru/LBRT/g1/nagaev/files/r-13.pdf
215.
S. V. Nagaev, “Certain estimates for the maximum sum of independent identically distributed random variables”, Abstr. Comm. Intern. Conf. Probab. Theory and Math. Statist. Vilnius, 2 (1973), 103-104. (Vilnius, Lithuania), 103-104, 1973, 103-104
216.
Nagaev S. V., Matematicheskaya statistika, Kurs lektsii dlya studentov matematicheskogo fakulteta, NGU, 1973 , 176 pp.
1972
217.
S. V. Nagaev, “Large deviations for sums of independent , identically distributed random variables”, Dokl. Akad. Nauk SSSR, 206:1 (1972), 25–26
1973
218.
S. V. Nagaev, “On necessary and sufficient conditions for the strong law of large numbers”, Theory Probab. Appl., 17:4 (1973), 573–581
1972
219.
Nagaev S.V., “On necessary and sufficient conditions for the strong law of large numbers”, Second Japan-USSR Symp. Probab. Theory, (Kyoto), 1972, 53-54
220.
S.V. Nagaev, V.I. Rotar, “On an estimate of the speed of convergence in the central limit theorem using pseudomoments”, Theory Probab. Appl., 17:2 (1972), 365-366
221.
Nagaev S. V., Teoriya veroyatnostei, NGU, Novosibirsk, 1972 , 155 pp.
1971
222.
S. V. Nagaev, V. I. Rotar', “On the estimates of Ljapunov type for distributions of sums close to normal”, Dokl. Akad. Nauk SSSR, 199:4 (1971), 778–779
223.
D. H. Fuc, S. V. Nagaev, “Probability inequalities for sums of independent random variables”, Theory Probab. Appl., 16:4 (1971), 643–660
224.
S. V. Nagaev, “An estimate of the convergence rate for the absorption probability”, Theory Probab. Appl., 16:1 (1971), 147–154
225.
Nagaev S. V., “A limit theorem for a supercritical branching process”, Mathematical notes of the Academy of Sciences of the USSR, 9:5 (1971) , 338–342 pp. http://www.nnn.ru/~ivanov/paper1.pdf{www.nnn.ru/~ivanov/paper1.pdf}{www.nnn.ru/~ivanov/paper1.pdf}
1970
226.
S. V. Nagaev, “Asymptotical expansions for the maximum of sums of independent random variables”, Theory Probab. Appl., 15:3 (1970), 514–515
S. V. Nagaev, “On the convergence speed of distribution of maximum sums of independent random variables”, Theory Probab. Appl., 15:2 (1970), 309–314https://epubs.siam.org/doi/abs/10.1137/1115036
229.
S. V. Nagaev, “On the speed of convergence in a boundary problem. I”, Theory Probab. Appl., 15:2, https://epubs.siam.org/doi/abs/10.1137/1115026 (1970), 163–186
230.
S.V. Nagaev, “On estimation of a convergence rate in boundary problems”, Proc. Sixth Summer Math. School on Probab. and Math. Statist., (Kiev, 1970), 1970, 312 – 325
231.
S. V. Nagaev, “Asymptotic expansions for the distribution function of the maximum of a sum of independent identically distributed random quantities”, Siberian Mathematical Journal, 11:2 (1970), 288–309
1969
232.
S. V. Nagaev, “Letter to the editors”, Theory Probab. Appl., 14:4 (1969), 726
233.
Nagaev S.V., “Asymptotic expansions for the distribution of the maximum sum of independent random variables”, First USSR-Japan Symp. Probab. Theory, 1969, 200 – 208
234.
Nagaev, S. V., “Estimating the rate of convergence for the distribution of the maximum sums of independent random quantities”, Siberian Mathematical Journal, 10:3 (1969), 443-458
S. V. Nagaev, “An estimation of a convergence rate for the absorption probability in case of a null expectation”, Theory Probab. Appl., 13:1 (1968), 160–164
237.
S.V. Nagaev, “On a theorem of Robbins”, Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk, 1968, no. 3, 15-18
238.
S.V. Nagaev, R. Mukhamedkhanova, “Certain remarks apropos of earlier published limit theorems in the theory of branching processes”, Probability Models and Quality Control, FAN, Tashkent, 1968, 46-49
1967
239.
J.G. Kosarev, S.V., Nagaev, “Time losses in synchronization in homogenious computing systems”, Vychisl. Systemy, 1967, no. 24, 21-39
240.
Nagaev S.V., “Estimation of the mean number of direct descendants of a particle in a branching random process”, Theory of Probability and its Applications, 12:2 (1967), 314-320
1966
241.
S.V. Nagaev, “A rate of a convergence to the uniform distribution on a segment”, Limit Theorems and Statistical Inference, FAN, Tashkent, 1966, 113-117
242.
S.V. Nagaev, R.G. Mukhamedkhanova, “Some limit theorems of theory of branching processes”, Limit Theorems and Statistical Inference, FAN, Tashkent, 1966, 90-112
243.
Nagaev S.V., Muhamedhanova R., “Transition phenomena in branching random processes with discrete time”, Limit Theorems Statist. Inference, Tashkent, 1966, 83-89
244.
A. A. Borovkov, S. V. Nagaev, B. A. Rogozin, Theory Probab. Appl., 11:3 (1966), 488–494
1965
245.
S. V. Nagaev, “Some limit theorems for large deviations”, Theory Probab. Appl., 10:2 (1965), 214–235
Nagaev S.V., “Limit theorems for large deviations”, Winter School in Theory of Probability and Math. Statistics held in Užgorod (Kiev), eds. W. Hoeffding, Izdat. Akad. Nauk Ukrain. SSR, Kiev, 1964, 147–163
248.
S.V. Nagaev, “Limit theorems for large deviations”, Winter School in Theory of Probability and Math. Statistics held in Užgorod,, Izdat. Akad. Nauk Ukrain. SSR,, Kiev, 1964, 147–163
1963
249.
S. V. Nagaev, “An integral limit theorem for large deviations”, Soviet Mathematics Dokl., 148:2 (1963), 280
1962
250.
S.V. Nagaev, Limit theorems for Markov processes with discrete time, Thesis for the degree of Doctor of Physical and Mathematical Sciences, Acad. Sciences UzSSR, Tashkent, 1962 , 148 pp.
251.
Nagaev S.V., “Some problems in the theory of Markov processes in discrete time”, Proc. Sixth All-Union Conf. Theory Prob. and Math. Statist (Proc. Sixth All-Union Conf. Theory Prob. and Math. Statist. Vilnius, 1960), Gospolitnauchizdat, Vilnyus, 1962, 145–147
252.
Nagaev S.V., “Some problems in the theory of Markov processes in discrete time”, Proc. Sixth All-Union Conf. Theory Prob. and Math. Statist (Proc. Sixth All-Union Conf. Theory Prob. and Math. Statist. (Vilnius, 1960), (In Russian), Gosudarstv. Izdat. Političesk. i Naučn. Lit., Vilnius, 1962, 145–147
253.
S.V. Nagaev, “A central limit theorem for discrete-time Markov processes”, Izv. Akad. Nauk UzSSR, Ser. Fiz-Mat. Nauk, 1962, no. 2, 12-20
254.
S.V. Nagaev, “Local limit theorems for large deviations”, Vestnik Leningrad. Univ. Math., Mech., Astron., 1:8 (1962), 80-88
1961
255.
Nagaev S.V., “Some questions of the theory of homogenious Markov processes with discrete time”, Soviet Mathematics, 2:2 (1961), 867 – 869
S.V. Nagaev, “The simplified proof of the factorization theorem”, Trudy Inst. Mat. Akad. Nauk UzSSR, 22:3 (1961)
1960
258.
S.V. Nagaev, “Local limit theorems for large deviations”, Theory Probab. Appl., 5:2 (1960) , 2 pp.
259.
S.V. Nagaev, “Limit theorems for large deviations in the theory of homogenious Markov chains”, Proc. Fifth All -Union Conf. Probab. and Math. Statist. (Yerevan, September 19-25, 1958), eds. G. A. Ambartsumian et al., Publishing House of the Academy of Sciences Arm. SSR, Yerevan, 1960, 52-54
1958
260.
S.V. Nagaev, Some limit theorems for homogeneous Markov chains, PhD thesis, (In Russian), Tashkent State University, Tashkent, 1958 , 56 pp.
1957
261.
S. V. Nagaev, “On some limit theorems for homogenious Markov chains”, Dokl. Akad. Nauk SSSR, 115:2 (1957), 237–239
Nagaev S.V., “On the local limit theorem for a sequence of random variables connected to a simple homogeneous Markov chain with a countable set of possible values”, Probability Theory and Its Application, 2:1 (1957) , 3 pp., (In Russian)
264.
Nagaev S.V., Some limit theorems for homogeneous Markov chains, Abstract of thesis for the degree of candidate of physical and mathematical sciences, V.I. Lenin Central Asian State University. Faculty of Physics and Mathematics, Tashkent: Publishing House Acad. Sciences UzSSR, 1957, Tashkent, 1957
265.
S.V. Nagaev, “On a local limit theorem for the sequence or random variables forming a simple homogenious Markov chain with a denumerable set of admissible values”, Izv. Akad. Nauk UzSSR, Ser. Fiz-Mat. Nauk, 3 (1957), 71-72