Loading [MathJax]/jax/output/SVG/config.js
Proceedings of the Edinburgh Mathematical Society. Series II
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Main page
About this project
Software
Classifications
Links
Terms of Use

Search papers
Search references

RSS
Current issues
Archive issues
What is RSS






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Proceedings of the Edinburgh Mathematical Society. Series II, 2014, Volume 57, Issue 1, Pages 145–173
DOI: https://doi.org/10.1017/S0013091513000898
(Mi pems3)
 

This article is cited in 14 scientific papers (total in 14 papers)

Double solids, categories and non-rationality

A. Ilieva, L. Katzarkovb, V. Przyjalkowskic

a Department of Mathematical Sciences, College of Natural Science, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul 151-747, Republic of Korea
b Department of Mathematics, University of California, Irvine, CA 92697-3875, USA
c Mathematical Institute, Russian Academy of Sciences, 32A Leninsky Avenue, Moscow, Russia
Citations (14)
Funding agency Grant number
Austrian Science Fund P20778
P24572-N25
National Science Foundation DMS0600800
DMS-0652633
DMS-0854977
DMS-0854977
DMS-0901330
European Research Council GEMIS
Russian Foundation for Basic Research 11-01-00336-a
11-01-00185-a
12-01-33024
12-01-31012
Ministry of Education and Science of the Russian Federation MK-1192.2012.1
NSh-5139.2012.1
11.G34.31.0023
A. I. was funded by the FWF (Grant P20778). L. K. was funded by the NSF (Grant DMS0600800), the NSF FRG (Grant DMS-0652633), the FWF (Grant P20778) and the ERC (Grant GEMIS). V. P. was funded by the NSF FRG (Grant DMS-0854977), the NSF (Grants DMS-0854977 and DMS-0901330), by the FWF (Grants P24572-N25 and P20778), by the RFFI (Grants 11-01-00336-a, 11-01-00185-a, 12-01-33024 and 12-01-31012; Grants MK-1192.2012.1, NSh-5139.2012.1) and by the AG Laboratory GU-HSE RF (Grant ag. 11 11. G34.31.0023).
Bibliographic databases:
Document Type: Article
Language: English
Linking options:
  • https://www.mathnet.ru/eng/pems3
  • This publication is cited in the following 14 articles:
    1. Alexandra Kuznetsova, “Double covers of smooth quadric threefolds with Artin–Mumford obstructions to rationality”, Journal of London Math Soc, 110:6 (2024)  crossref
    2. Alessandro Verra, Springer INdAM Series, 53, Algebraic Geometry between Tradition and Future, 2023, 191  crossref
    3. Alexandra Kuznetsova, “Non-rational sextic double solids”, Math. Z., 301:4 (2022), 4015  crossref
    4. Remkes Kooistra, Alan Thompson, “Threefolds fibred by mirror sextic double planes”, Can. J. Math.-J. Can. Math., 73:5 (2021), 1305  crossref
    5. Shinobu Hosono, Hiromichi Takagi, “Derived categories of Artin–Mumford double solids”, Kyoto J. Math., 60:1 (2020)  crossref
    6. Charles F. Doran, Andrew Harder, Andrey Y. Novoseltsev, Alan Thompson, “Calabi–Yau threefolds fibred by high rank lattice polarized K3 surfaces”, Math. Z., 294:1-2 (2020), 783  crossref
    7. Ivan Cheltsov, Victor Przyjalkowski, Constantin Shramov, “Which quartic double solids are rational?”, J. Algebraic Geom., 28:2 (2019), 201–243  mathnet  crossref  isi  scopus
    8. Yu. G. Prokhorov, “The rationality problem for conic bundles”, Russian Math. Surveys, 73:3 (2018), 375–456  mathnet  mathnet  crossref  crossref  isi  scopus
    9. V. V. Przyjalkowski, “Toric Landau–Ginzburg models”, Russian Math. Surveys, 73:6 (2018), 1033–1118  mathnet  mathnet  crossref  crossref  isi  scopus
    10. Arnaud Beauville, “A very general sextic double solid is not stably rational”, Bull. London Math. Soc., 48:2 (2016), 321  crossref
    11. Victor V. Przyjalkowski, Constantin A. Shramov, “Double quadrics with large automorphism groups”, Proc. Steklov Inst. Math., 294 (2016), 154–175  mathnet  mathnet  crossref  crossref  isi  scopus
    12. Kyusik Hong, “Factorial quartic double solids”, Int. J. Algebra Comput., 25:07 (2015), 1179  crossref
    13. Ivan Cheltsov, Ludmil Katzarkov, Victor Przyjalkowski, Birational Geometry, Rational Curves, and Arithmetic, 2013, 93  crossref
    14. N. O. Ilten, J. Lewis, V. Przyjalkowski, “Toric degenerations of Fano threefolds giving weak Landau–Ginzburg models”, J. Algebra, 374 (2013), 104–121  mathnet  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:189
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025