Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2024, Issue 17, Pages 152–154
DOI: https://doi.org/10.17223/2226308X/17/39
(Mi pdma669)
 

Applied Theory of Coding, Automata and Graphs

Finite-state generators with maximal period

E. S. Prudnikov

Tomsk State University
References:
Abstract: The periodic properties of a two-stage finite-state generator $G=A_1\cdot A_2$ are studied, where $A_1=(\mathbb{F}_2^n,\mathbb{F}_2, g_1, f_1)$ (it is autonomous), $A_2 = (\mathbb{F}_2,\mathbb{F}_2^m,\mathbb{F}_2,g_2,f_2)$, $n,m\geq 1$. Some necessary conditions for such a generator with the maximum period are formulated, namely: 1) the output sequence of $A_1$ is purely periodic and the period length is $2^n$; 2) the function $f_1$ has an odd weigth; 3) substitutions $g(0,\cdot)$ and $g(1,\cdot)$ have different parities. Some sufficient conditions have been also formulated, for example, the function $g_2(u,y)$ must be injective in $u$ and the weigth of the function $f_2$ must be odd. A method for constructing a generator having maximum period has been proposed.
Keywords: finite-state generator, maximum period, substitutions.
Document Type: Article
UDC: 519.7
Language: Russian
Citation: E. S. Prudnikov, “Finite-state generators with maximal period”, Prikl. Diskr. Mat. Suppl., 2024, no. 17, 152–154
Citation in format AMSBIB
\Bibitem{Pru24}
\by E.~S.~Prudnikov
\paper Finite-state generators with maximal period
\jour Prikl. Diskr. Mat. Suppl.
\yr 2024
\issue 17
\pages 152--154
\mathnet{http://mi.mathnet.ru/pdma669}
\crossref{https://doi.org/10.17223/2226308X/17/39}
Linking options:
  • https://www.mathnet.ru/eng/pdma669
  • https://www.mathnet.ru/eng/pdma/y2024/i17/p152
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025