Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2024, Issue 17, Pages 44–48
DOI: https://doi.org/10.17223/2226308X/17/11
(Mi pdma641)
 

Discrete Functions

Cryptanalytic invertibility of three-argument functions

I. A. Pankratova, A. D. Sorokoumova

Tomsk State University
References:
Abstract: Tests of cryptanalytic invertibility for functions $g:D_1\times D_2\times D_3\to D$ are proposed: 1) function $g$ is invertible with respect to the variable $x_1$ of the type $\forall\forall\exists$ iff there is a mapping $\phi:D_1\times D_2\to D_3$ such that the following condition is satisfied:
$$\forall a,c\in D_1 \forall b,d\in D_2 \big(a\neq c\ \Rightarrow\ g(a,b,\phi(a,b))\neq g(c,d,\phi(c,d))\big);$$
2) function $g$ is invertible with respect to the variable $x_1$ of the type $\forall\exists\forall$ iff there is a mapping $\phi:D_1\to D_2$ such that the following condition is satisfied:
$$\forall a,c\in D_1 \forall b,d\in D_3 \big(a\neq c\ \Rightarrow\ g(a,\phi(a),b)\neq g(c,\phi(c),d)\big);$$
3) function $g$ is invertible with respect to the variable $x_3$ of the type $\forall\exists\forall$ iff there is a mapping $\phi:D_1\to D_2$ such that the following condition is satisfied:
$$\forall a,c\in D_1 \forall b,d\in D_3 \big(b\neq d\ \Rightarrow\ g(a,\phi(a),b)\neq g(c,\phi(c),d)\big);$$
4) function $g$ is invertible with respect to the variable $x_2$ of the type $\exists\forall\forall$ iff there is $a\in D_1$ such that the following condition is satisfied:
$$\forall b,d\in D_2 \forall y,z\in D_3 \big(b\neq d\ \Rightarrow\ g(a,b,y)\neq g(a,d,z)\big);$$
5) function $g$ is invertible with respect to the variable $x_2$ of the type $\exists\forall\exists$ iff there are $a\in D_1$ and a mapping $\phi:D_2\to D_3$ such that the following condition is satisfied:
$$\forall b,d\in D_2 \big(b\neq d\ \Rightarrow\ g(a,b,\phi(b))\neq g(a,d,\phi(d))\big).$$
Algorithms for constructing a recovering function and generating invertible functions are formulated too.
Keywords: cryptanalytic invertibility, invertibility test, recovering function.
Document Type: Article
UDC: 519.7
Language: Russian
Citation: I. A. Pankratova, A. D. Sorokoumova, “Cryptanalytic invertibility of three-argument functions”, Prikl. Diskr. Mat. Suppl., 2024, no. 17, 44–48
Citation in format AMSBIB
\Bibitem{PanSor24}
\by I.~A.~Pankratova, A.~D.~Sorokoumova
\paper Cryptanalytic invertibility of three-argument functions
\jour Prikl. Diskr. Mat. Suppl.
\yr 2024
\issue 17
\pages 44--48
\mathnet{http://mi.mathnet.ru/pdma641}
\crossref{https://doi.org/10.17223/2226308X/17/11}
Linking options:
  • https://www.mathnet.ru/eng/pdma641
  • https://www.mathnet.ru/eng/pdma/y2024/i17/p44
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:37
    Full-text PDF :18
    References:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025