Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2023, Issue 16, Pages 136–140
DOI: https://doi.org/10.17223/2226308X/16/36
(Mi pdma629)
 

This article is cited in 1 scientific paper (total in 1 paper)

Applied Theory of Coding and Automata

Calculation of error-correcting pairs for an algebraic-geometric code

E. S. Malyginaa, A. A. Kuninetsb

a Immanuel Kant Baltic Federal University, Kaliningrad
b ОНК «Институт высоких технологий» БФУ им. И. Канта, г. Калининград
Full-text PDF (529 kB) Citations (1)
References:
Abstract: Error-correcting pairs are calculated explicitly for an arbitrary algebraic-geometric code and its dual code. Such a pair consists of codes that are necessary for an effective decoding algorithm for a given code. The type of pairs depends on the degrees of divisors with which both the original code and one of the codes from error-correcting pair are constructed. So for the algebraic-geometric code $\mathcal{C}_{\mathscr{L}}(D,G)$ of the length $n$ associated with a functional field $F/\mathbb{F}_q$ of genus $g$ the error-correcting pair with number of errors $t=(n-\deg(G)-g-1)/{2}$ is $(\mathcal{C}_{\mathscr{L}}(D,F), \mathcal{C}_{\mathscr{L}}(D,G+F)^\bot)$ or $(\mathcal{C}_{\mathscr{L}}(D,F)^\bot,\mathcal{C}_{\mathscr{L}}(D,F-G))$. For the dual code $\mathcal{C}_{\mathscr{L}}(D,G)^\bot$ the error-correcting pair with number of errors $t=(\deg(G)-3g+1)/{2}$ is $\mathcal{C}_{\mathscr{L}}(D,F),\mathcal{C}_{\mathscr{L}}(D,G-F))$. Considering each component of pair as MDS-code we obtain additional conditions on degrees of divisors $G$ and $F$. In addition, error-correcting pairs are calculated for subfield subcodes $\mathcal{C}_{\mathscr{L}}(D,G)|_{\mathbb{F}_p}$ and $\mathcal{C}_{\mathscr{L}}(D,G)^\perp|_{\mathbb{F}_p}$ where $\mathbb{F}_p$ is a subfield of $\mathbb{F}_q$. The form of a first component in the pair depends on degrees of divisors $G$ and $F$ and in some cases on genus $g$.
Keywords: function field, algebraic-geometric code, error-correcting pair, subfield subcodes.
Funding agency Grant number
Russian Science Foundation 22-41-04411
Document Type: Article
UDC: 519.17
Language: Russian
Citation: E. S. Malygina, A. A. Kuninets, “Calculation of error-correcting pairs for an algebraic-geometric code”, Prikl. Diskr. Mat. Suppl., 2023, no. 16, 136–140
Citation in format AMSBIB
\Bibitem{MalKun23}
\by E.~S.~Malygina, A.~A.~Kuninets
\paper Calculation of error-correcting pairs for an algebraic-geometric code
\jour Prikl. Diskr. Mat. Suppl.
\yr 2023
\issue 16
\pages 136--140
\mathnet{http://mi.mathnet.ru/pdma629}
\crossref{https://doi.org/10.17223/2226308X/16/36}
Linking options:
  • https://www.mathnet.ru/eng/pdma629
  • https://www.mathnet.ru/eng/pdma/y2023/i16/p136
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:132
    Full-text PDF :43
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024