Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2023, Issue 16, Pages 134–136
DOI: https://doi.org/10.17223/2226308X/16/35
(Mi pdma628)
 

Applied Theory of Coding and Automata

A series of short exact formulas for the Bhattacharya parameter of coordinate channels

S. G. Kolesnikovab, V. M. Leontieva

a Siberian Federal University, Krasnoyarsk
b M. F. Reshetnev Siberian State University of Science and Technologies
References:
Abstract: Let $W$ be a symmetric channel with binary input alphabet and a finite output alphabet. In 2007, E. Arikan discovered the phenomenon of channel polarization, which makes it possible to single out those synthetic channels $W_N^{(i)}$, constructed by $W$, through which it is preferable to transmit information bits. One of the tools for splitting channels into “bad” and “good” is the Bhattacharya parameter $Z(W_N^{(i)})$. However, the calculation of $Z(W_N^{(i)})$ is difficult, since it requires about $2^{2N}$ addition operations, where $N$ is the code length. In 2013, I. Tal and A. Vardy proposed a method for estimating from above and below the error probabilities in the channels $W_N^{(i)}$, $1 \leqslant i \leqslant N$, which has a complexity $O(N\mu^2\log \mu)$, where $\mu > \mu_0$ and the number $\mu_0$ does not depend on $N$. However, the number $\mu$ can be quite great and depends, in particular, on the required precision. Previously, in the case where $W$ is a memoryless binary symmetric channel, the authors constructed two series of exact formulas for the Bhattacharya parameters, which still require an exponential but much less number of operations than in the formulas from Arikan's original paper. In the present paper, for every $N=2^n$, we construct a series of $n(n-1)/2$ exact formulas that do not contain summation over variables.
Keywords: polar code, binary memoryless symmetric channel, Bhattacharya parameter.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2023-936
Document Type: Article
UDC: 621.391:519.725
Language: Russian
Citation: S. G. Kolesnikov, V. M. Leontiev, “A series of short exact formulas for the Bhattacharya parameter of coordinate channels”, Prikl. Diskr. Mat. Suppl., 2023, no. 16, 134–136
Citation in format AMSBIB
\Bibitem{KolLeo23}
\by S.~G.~Kolesnikov, V.~M.~Leontiev
\paper A series of short exact formulas for the Bhattacharya parameter of coordinate channels
\jour Prikl. Diskr. Mat. Suppl.
\yr 2023
\issue 16
\pages 134--136
\mathnet{http://mi.mathnet.ru/pdma628}
\crossref{https://doi.org/10.17223/2226308X/16/35}
Linking options:
  • https://www.mathnet.ru/eng/pdma628
  • https://www.mathnet.ru/eng/pdma/y2023/i16/p134
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:66
    Full-text PDF :29
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024