Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2023, Issue 16, Pages 132–134
DOI: https://doi.org/10.17223/2226308X/16/34
(Mi pdma627)
 

Applied Theory of Coding and Automata

On a class of algebraic geometric codes

M. M. Glukhova, K. N. Pankovab

a Moscow Technical University of Communications and Informatics
b Russian Quantum Center, Skolkovo, Moscow
References:
Abstract: In the paper, we present a family of algebraic geometric codes over GF(256) that lie above the Gilbert — Varshamov bound together with dual codes. The family of these codes can be used to construct a post-quantum algorithm of the classic McEllice type. The following theorem holds for them: Let $E: y^3=(x^{63}-1)/(x^3-1)$ be a curve over the field $F=\text{GF}(256)$, $P_1,\ldots ,P_{720}$ are arbitrary distinct $F$-rational points of this curve, $P_\infty$ is the point at infinity. Then the algebraic geometric codes $C_r(D,G)$ on the curve defined by the divisors $D=P_1+\ldots +P_{720}$ and $G=rP_\infty$ for all integers $r$, $81\le r\le 197$, are $[720,3r-57,720-3r]_{2^8}$-codes, and their cardinality, as well as the cardinality of their dual $[720,777-3r,3r-114]_{2^8}$-codes, satisfies the Gilbert — Varshamov bound.
Keywords: post-quantum cryptography, error-correcting codes, algebraic geometric codes, Gilbert — Varshamov bound.
Document Type: Article
UDC: 003.26
Language: Russian
Citation: M. M. Glukhov, K. N. Pankov, “On a class of algebraic geometric codes”, Prikl. Diskr. Mat. Suppl., 2023, no. 16, 132–134
Citation in format AMSBIB
\Bibitem{GluPan23}
\by M.~M.~Glukhov, K.~N.~Pankov
\paper On a class of algebraic geometric codes
\jour Prikl. Diskr. Mat. Suppl.
\yr 2023
\issue 16
\pages 132--134
\mathnet{http://mi.mathnet.ru/pdma627}
\crossref{https://doi.org/10.17223/2226308X/16/34}
Linking options:
  • https://www.mathnet.ru/eng/pdma627
  • https://www.mathnet.ru/eng/pdma/y2023/i16/p132
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:66
    Full-text PDF :24
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024