Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2023, Issue 16, Pages 102–104
DOI: https://doi.org/10.17223/2226308X/16/26
(Mi pdma619)
 

Mathematical Methods of Cryptography

On the one quasigroup based format preserving encryption algorithm

K. D. Tsaregorodtsevab

a Lomonosov Moscow State University
b АО «НПК "Криптонит"», г. Москва
References:
Abstract: One of the possible approaches to the construction of “medium-sized” format preserving encryption (FPE) schemes is analyzed, which can be described as follows. Let us assume that there is a quasigroup $(M, \circ)$, where $M$ is a “medium-sized” set (i.e., $\lvert M \rvert = 2^{15}$ and above), and we want to construct a tweakable encryption scheme $E_k^{\tau} \colon M \to M$. Then with the help of $k$ and $\tau$ one can generate (using some pseudorandom function) a series of pseudorandom elements $k_i \in M$. To encrypt $m \in M$, one then applies a series of left shifts, i.e., $c \gets k_1 \circ \left( \ldots \left( k_{\ell} \circ m \right) \ldots \right) \in M$. The security of this method depends on the security of a pseudorandom function and the security of distinguishing a series of left shifts from the random permutation on $M$. We show that if one uses functional representation of a quasigroup operation using the proper families of discrete functions over the product of Abelian groups $H^n$, then left (right) shift, as well as its inverse, can be specified using proper families representation of an operation. A family of functions $F \colon M^n \to M^n$ is called proper iff for any $x, y \in M^n$ there exists $i$ such that $x_i \ne y_i$, but $F_i(x_1, \ldots, x_n) = F_i(y_1, \ldots, y_n)$. If $M = H^n$, where $(H, +)$ is a group, then one can define the following map: $\pi_F = \left( x_1 + F_1(x_1, \ldots, x_n), \ldots, x_n + F_n(x_1, \ldots, x_n) \right)$, which is a permutation in case of a proper family $F$. Then we can define a quasigroup operation $x \circ y = \pi_F(x) + \pi_G(y)$, where $F$ and $G$ are two proper families. The following theorem is proven: if $F$ is a proper family over $H^n$, then the family $\widetilde{F}(x) = (-x) + \pi^{-1}_F(x)$, where $\pi_F(x) = x + F(x)$, $x \in H^n$, is also proper. This theorem allows us to invert the $\circ$ operation using the functional representation: $x = \pi_{\widetilde{F}} \left( (x \circ y) - \pi_G(y) \right)$.
Keywords: FPE, quasigroup, proper family.
Document Type: Article
UDC: 512.548.7+004.056.55
Language: Russian
Citation: K. D. Tsaregorodtsev, “On the one quasigroup based format preserving encryption algorithm”, Prikl. Diskr. Mat. Suppl., 2023, no. 16, 102–104
Citation in format AMSBIB
\Bibitem{Tsa23}
\by K.~D.~Tsaregorodtsev
\paper On the one quasigroup based format preserving encryption algorithm
\jour Prikl. Diskr. Mat. Suppl.
\yr 2023
\issue 16
\pages 102--104
\mathnet{http://mi.mathnet.ru/pdma619}
\crossref{https://doi.org/10.17223/2226308X/16/26}
Linking options:
  • https://www.mathnet.ru/eng/pdma619
  • https://www.mathnet.ru/eng/pdma/y2023/i16/p102
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:54
    Full-text PDF :30
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024