|
This article is cited in 2 scientific papers (total in 2 papers)
Discrete Functions
Construction of a substitution on $\mathbb{F}_2^n$ based on a single Boolean function
I. A. Pankratova, A. A. Medvedev Tomsk State University
Abstract:
The following construction of a vector Boolean function is considered: $F(x)=\big(f(x),f(\pi(x)),f(\pi^2(x)),\ldots, f(\pi^{n-1}(x))\big)$, where $\pi\in\mathbb{S}_n$, $f$ is a $n$-dimensional Boolean function. Some necessary conditions for $F$ to be a bijection are proved, namely: $f$ must be balanced, $f(0^n)\neq f(1^n)$, $\pi$ must be full cycle substitution, $f\neq\mathrm{const}$ on any cycle of substitution $\pi'$, where $\pi'(a_1\ldots a_n)=(a_{\pi(1)}\ldots a_{\pi(n)})$ for all $a_1\ldots a_n\in\mathbb{F}_2^n$.
Keywords:
bijection, vector Boolean function.
Citation:
I. A. Pankratova, A. A. Medvedev, “Construction of a substitution on $\mathbb{F}_2^n$ based on a single Boolean function”, Prikl. Diskr. Mat. Suppl., 2023, no. 16, 29–31
Linking options:
https://www.mathnet.ru/eng/pdma601 https://www.mathnet.ru/eng/pdma/y2023/i16/p29
|
Statistics & downloads: |
Abstract page: | 51 | Full-text PDF : | 27 | References: | 17 |
|