Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2023, Issue 16, Pages 29–31
DOI: https://doi.org/10.17223/2226308X/16/8
(Mi pdma601)
 

This article is cited in 2 scientific papers (total in 2 papers)

Discrete Functions

Construction of a substitution on $\mathbb{F}_2^n$ based on a single Boolean function

I. A. Pankratova, A. A. Medvedev

Tomsk State University
Full-text PDF (502 kB) Citations (2)
References:
Abstract: The following construction of a vector Boolean function is considered: $F(x)=\big(f(x),f(\pi(x)),f(\pi^2(x)),\ldots, f(\pi^{n-1}(x))\big)$, where $\pi\in\mathbb{S}_n$, $f$ is a $n$-dimensional Boolean function. Some necessary conditions for $F$ to be a bijection are proved, namely: $f$ must be balanced, $f(0^n)\neq f(1^n)$, $\pi$ must be full cycle substitution, $f\neq\mathrm{const}$ on any cycle of substitution $\pi'$, where $\pi'(a_1\ldots a_n)=(a_{\pi(1)}\ldots a_{\pi(n)})$ for all $a_1\ldots a_n\in\mathbb{F}_2^n$.
Keywords: bijection, vector Boolean function.
Document Type: Article
UDC: 519.7
Language: Russian
Citation: I. A. Pankratova, A. A. Medvedev, “Construction of a substitution on $\mathbb{F}_2^n$ based on a single Boolean function”, Prikl. Diskr. Mat. Suppl., 2023, no. 16, 29–31
Citation in format AMSBIB
\Bibitem{PanMed23}
\by I.~A.~Pankratova, A.~A.~Medvedev
\paper Construction of a substitution on~$\mathbb{F}_2^n$ based on a single Boolean function
\jour Prikl. Diskr. Mat. Suppl.
\yr 2023
\issue 16
\pages 29--31
\mathnet{http://mi.mathnet.ru/pdma601}
\crossref{https://doi.org/10.17223/2226308X/16/8}
Linking options:
  • https://www.mathnet.ru/eng/pdma601
  • https://www.mathnet.ru/eng/pdma/y2023/i16/p29
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:51
    Full-text PDF :27
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024