Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2023, Issue 16, Pages 18–22
DOI: https://doi.org/10.17223/2226308X/16/5
(Mi pdma598)
 

Discrete Functions

Some classes of resilient functions over Galois rings and their linear characteristics

O. V. Kamlovskiia, K. N. Pankovbc

a LLC "Certification Research Center", Moscow
b Moscow Technical University of Communications and Informatics
c Russian Quantum Center, Skolkovo, Moscow
References:
Abstract: Let $R=\text{GR}(q^l,p^l)=\{r_1,\ldots,r_{q^l}\}$ be a Galois ring. Let $A_n(R)$ be a set of all affine functions $g(\vec x)=a_0+a_1x_1+\ldots+a_nx_n=a_0+\langle \vec a,\vec x \rangle$, where $\vec x=(x_1,\ldots,x_n)$, $a_0\in R$, $\vec a=(a_1,\ldots,a_n)\in R^n$. We present some classes of resilient function $f:R^n\to R$ with the specified value of linear characteristic $C(f)$, where $C(f)=\max_{a\in R\setminus \{0\}}\max_{g\in A_n(R)}\left|\sum\limits_{x_1,\ldots,x_n\in R}{\chi(af(\vec x)-g(\vec x))} \right|$ and $\chi$ is the canonical additive character of the ring $R$. In the paper, we describe the function $f$ using a branching construction of the given functions $f_1,\ldots,f_{r_{q^l}}$ in $n-1$ variables. We prove that in the case when the functions $f_1,\ldots,f_{r_{q^l}}$ are $k$-resilient, the resulting function $f$ is also $k$-resilient. Moreover, $C(f)\le C(f_{r_1})+\ldots+C(f_{r_{q^l}})$. We also describe the function $f(\vec x,\vec y)=\langle \phi(\vec x),\vec y\rangle+h(\vec x)$, where $n=2k$, $\phi:R^k\to R^{k}$, $h:R^k\to R$, $\vec x$, $\vec y\in R^k$. It is known that in the case $\phi(R^k)\subset (R^*)^k$ ($R^*$ is the group of units in the ring $R$) the function $f$ is $(k-1)$-resilient. We prove that in the case $|\phi^{-1}(\vec c)|\le t$ for all $\vec c\in R^k$ the enequality $C(f)\le q^{k(2l-1)}$ is true.
Keywords: discrete functions, resilient functions, Galois rings, linear characteristic of functions.
Document Type: Article
UDC: 511.336+519.113.6
Language: Russian
Citation: O. V. Kamlovskii, K. N. Pankov, “Some classes of resilient functions over Galois rings and their linear characteristics”, Prikl. Diskr. Mat. Suppl., 2023, no. 16, 18–22
Citation in format AMSBIB
\Bibitem{KamPan23}
\by O.~V.~Kamlovskii, K.~N.~Pankov
\paper Some classes of resilient functions over Galois rings and their linear characteristics
\jour Prikl. Diskr. Mat. Suppl.
\yr 2023
\issue 16
\pages 18--22
\mathnet{http://mi.mathnet.ru/pdma598}
\crossref{https://doi.org/10.17223/2226308X/16/5}
Linking options:
  • https://www.mathnet.ru/eng/pdma598
  • https://www.mathnet.ru/eng/pdma/y2023/i16/p18
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:63
    Full-text PDF :34
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024