Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2023, Issue 16, Pages 5–8
DOI: https://doi.org/10.17223/2226308X/16/1
(Mi pdma594)
 

Theoretical Foundations of Applied Discrete Mathematics

Bounds on the number of partitions of the vector space over a finite field into affine subspaces of the same dimension

I. P. Baksovaab, Yu. V. Tarannikova

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Лаборатория ТВП
References:
Abstract: We give lower and upper bounds on the number of ordered $N_m^k\left(q\right)$ and unordered $\widetilde{N}_m^k\left(q\right)$ partitions of the space $\mathbb{F}_q^m$ into affine subspaces of the same dimension $k$. In particular, the asymptotics of the logarithm of the number of unordered partitions of the space $\mathbb{F}_3^m$ into one-dimensional affine subspaces is established:
$$\dfrac{m}{3}\cdot 3^{m}+c_{1}\cdot 3^{m}+o\left(3^{m}\right)\leq \log_{3}\widetilde{N}^{1}_{m}\left(3\right)\leq \dfrac{m}{3}\cdot 3^{m}+c_{2}\cdot 3^{m}+o\left(3^{m}\right).$$
Also, we highlight the bounds
\begin{gather*} \log_q{N_{m}^{k}\left(q\right)}\gtrsim (m-k)q^{m-k}, m-k\rightarrow\infty,\\ \log_3{N_{m}^{k}\left(3\right)}\gtrsim 2\left(m-k\right) 3^{m-k},\\ \log_q N_{m}^{k}\left(q\right)\gtrsim \left(m-\frac{q-1}{q} k\right)q^{m-k}, k\rightarrow\infty, m-k\rightarrow\infty\\ \log_q{N_{m}^{k}\left(q\right)}\leq (k+1)(m-k-\log_q e)q^{m-k}+O(q^{m-k})+O(k(m-k)). \end{gather*}
Keywords: affine subspaces, partitions of a space, bounds, bent functions.
Document Type: Article
UDC: 519.115.4
Language: Russian
Citation: I. P. Baksova, Yu. V. Tarannikov, “Bounds on the number of partitions of the vector space over a finite field into affine subspaces of the same dimension”, Prikl. Diskr. Mat. Suppl., 2023, no. 16, 5–8
Citation in format AMSBIB
\Bibitem{BakTar23}
\by I.~P.~Baksova, Yu.~V.~Tarannikov
\paper Bounds on the number of partitions of the vector space over a finite field into affine subspaces of the same dimension
\jour Prikl. Diskr. Mat. Suppl.
\yr 2023
\issue 16
\pages 5--8
\mathnet{http://mi.mathnet.ru/pdma594}
\crossref{https://doi.org/10.17223/2226308X/16/1}
Linking options:
  • https://www.mathnet.ru/eng/pdma594
  • https://www.mathnet.ru/eng/pdma/y2023/i16/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:62
    Full-text PDF :18
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024