Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2022, Issue 15, Pages 112–116
DOI: https://doi.org/10.17223/2226308X/15/27
(Mi pdma592)
 

Applied Theory of Coding and Graphs

The upper and lower bounds for the number of additional arcs in a minimal edge $1$-extension of oriented cycle

O. V. Modenova, M. B. Abrosimov

Saratov State University
References:
Abstract: A $k$-edge extension of a graph $G$ with $n$ vertices is minimal if it has $n$ vertices and contains the minimum number of edges or arcs among all $k$-edge extensions of $G$ with $n$ vertices. Minimal edge $1$-extensions of cycles are well studied. In this paper, we consider minimal edge $1$-extensions of cycle orientations. We study the upper and lower bounds for the number of additional arcs $\text{ec}(C_n)$ of a minimal edge $1$-extension of the oriented cycle $C_n$. The main result is an estimate for the number of additional arcs: $\left\lceil {n}/{2} \right\rceil \leq \text{ec}(C_n) \leq n$. Examples of cycle orientations on which the upper and lower bounds are achieved are given.
Keywords: minimal edge extension, cycle orientation, fault-tolerance.
Document Type: Article
UDC: 519.17
Language: Russian
Citation: O. V. Modenova, M. B. Abrosimov, “The upper and lower bounds for the number of additional arcs in a minimal edge $1$-extension of oriented cycle”, Prikl. Diskr. Mat. Suppl., 2022, no. 15, 112–116
Citation in format AMSBIB
\Bibitem{ModAbr22}
\by O.~V.~Modenova, M.~B.~Abrosimov
\paper The upper and lower bounds for the number of additional arcs in a minimal edge $1$-extension of oriented cycle
\jour Prikl. Diskr. Mat. Suppl.
\yr 2022
\issue 15
\pages 112--116
\mathnet{http://mi.mathnet.ru/pdma592}
\crossref{https://doi.org/10.17223/2226308X/15/27}
Linking options:
  • https://www.mathnet.ru/eng/pdma592
  • https://www.mathnet.ru/eng/pdma/y2022/i15/p112
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:74
    Full-text PDF :19
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024