Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2022, Issue 15, Pages 110–112
DOI: https://doi.org/10.17223/2226308X/15/26
(Mi pdma591)
 

Applied Theory of Coding and Graphs

About the uniqueness of the minimal $1$-edge extension of a hypercube

A. A. Lobov, M. B. Abrosimov

Saratov State University
References:
Abstract: A graph $G^*$ is a $k$-edge extension of a graph $G$ if every graph obtained by removing any $k$ edges from $G^*$ contains $G$. A $k$-edge extention $G^*$ of a graph $G$ is said to be minimal if it contains $n$ vertices, where $n$ is the number of vertices in $G$, and $G^*$ has the minimum number of edges among all $k$-edge extensions of the graph $G$ with $n$ vertices. The hypercube $Q_n$ is a regular $2^n$-vertex graph of order $n$, which is the Cartesian product of $n$ complete $2$-vertex graphs $K_2$. We propose a family of graphs $Q^*_n$ whose representatives for $n>1$ are minimal $1$-edge extensions of the corresponding hypercubes. The computational experiment showed that for $n \leq 4$ these extensions are unique up to isomorphism. In this paper, we succeeded in obtaining an analytical proof of the uniqueness of minimal $1$-edge extensions of hypercubes for $n \leq 4$, as well as establishing one general property of an arbitrary minimal $1$-edge extension of a hypercube for $n > 2$.
Keywords: graph, hypercube, edge fault tolerance, minimal $1$-edge extension.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FSRR-2020-0006
Document Type: Article
UDC: 519.17
Language: Russian
Citation: A. A. Lobov, M. B. Abrosimov, “About the uniqueness of the minimal $1$-edge extension of a hypercube”, Prikl. Diskr. Mat. Suppl., 2022, no. 15, 110–112
Citation in format AMSBIB
\Bibitem{LobAbr22}
\by A.~A.~Lobov, M.~B.~Abrosimov
\paper About the uniqueness of the minimal $1$-edge extension of a hypercube
\jour Prikl. Diskr. Mat. Suppl.
\yr 2022
\issue 15
\pages 110--112
\mathnet{http://mi.mathnet.ru/pdma591}
\crossref{https://doi.org/10.17223/2226308X/15/26}
Linking options:
  • https://www.mathnet.ru/eng/pdma591
  • https://www.mathnet.ru/eng/pdma/y2022/i15/p110
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:80
    Full-text PDF :25
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024