Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2022, Issue 15, Pages 54–57
DOI: https://doi.org/10.17223/2226308X/15/14
(Mi pdma579)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical Methods of Cryptography

Calculation of the differential probabilities for the sum of $k$ numbers modulo $2^n$

A. S. Mokrousov

Novosibirsk State University
Full-text PDF (573 kB) Citations (1)
References:
Abstract: We study the differential probabilities $\mathrm{xdp}_{\mathrm{k}}^+(\alpha^1, \dots, \alpha^k \to \alpha^0)$ of the function $f(x_1,\dots, x_k) = x_1 + \dots + x_k \mod 2^n$, $\alpha^0, \alpha^1, \dots, \alpha^k \in \mathbb{Z}_2^n$, where differences are expressed using bitwise “exclusive or”. These values are used in differential cryptanalysis of cryptographic primitives which contain bitwise “exclusive or” and addition modulo $2^n$, such as ARX-constructions. We propose analytic expressions of matrices that are used for calculating $\mathrm{xdp}_{\mathrm{k}}^+$. We also study the differential probability $\mathrm{adp}^{\oplus}(\alpha, \beta \to \gamma)$ of the function $x \oplus y$, $\alpha, \beta, \gamma \in \mathbb{Z}_2^n$, where differences are expressed using addition modulo $2^n$, and describe all triples of differences whose probabilities are greater than ${1}/{4}$.
Keywords: ARX, exclusive or, modular addition, differential cryptanalysis, differential probabilities.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0018
Document Type: Article
UDC: 519.7
Language: Russian
Citation: A. S. Mokrousov, “Calculation of the differential probabilities for the sum of $k$ numbers modulo $2^n$”, Prikl. Diskr. Mat. Suppl., 2022, no. 15, 54–57
Citation in format AMSBIB
\Bibitem{Mok22}
\by A.~S.~Mokrousov
\paper Calculation of the differential probabilities for the sum of $k$ numbers modulo $2^n$
\jour Prikl. Diskr. Mat. Suppl.
\yr 2022
\issue 15
\pages 54--57
\mathnet{http://mi.mathnet.ru/pdma579}
\crossref{https://doi.org/10.17223/2226308X/15/14}
Linking options:
  • https://www.mathnet.ru/eng/pdma579
  • https://www.mathnet.ru/eng/pdma/y2022/i15/p54
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:92
    Full-text PDF :33
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024