Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2022, Issue 15, Pages 26–30
DOI: https://doi.org/10.17223/2226308X/15/7
(Mi pdma572)
 

This article is cited in 1 scientific paper (total in 1 paper)

Discrete Functions

Properties of subfunctions of self-dual bent functions

A. V. Kutsenkoab

a Novosibirsk State University, Mechanics and Mathematics Department
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Full-text PDF (612 kB) Citations (1)
References:
Abstract: Boolean functions in an even number of variables with flat Walsh — Hadamard spectrum are called bent functions. For every bent function, say $f$, its dual bent function, denoted by $\widetilde{f}$, is uniquely defined. If ${\widetilde{f}=f}$, then $f$ is called self-dual bent, and in the case ${\widetilde{f}=f\oplus 1}$ it is called an anti-self-dual bent. In this paper, we study subfunctions of self-dual bent functions obtained by a fixation of the first and the first two coordinates. We characterize subfunctions in $n-1$ variables considering their Rayleigh quotients. A sufficient condition for all subfunctions in $n-2$ variables to be bent is obtained. We propose new iterative constructions of self-dual bent functions in $n$ variables comprising the usage of bent functions in ${n-4}$ variables. Based on them, a new iterative lower bound on the cardinality of the set of self-dual bent functions is obtained.
Keywords: self-dual bent function, subfunction, near-bent function, Rayleigh quotient of the Sylvester Hadamard matrix.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-281
Document Type: Article
UDC: 519.7
Language: Russian
Citation: A. V. Kutsenko, “Properties of subfunctions of self-dual bent functions”, Prikl. Diskr. Mat. Suppl., 2022, no. 15, 26–30
Citation in format AMSBIB
\Bibitem{Kut22}
\by A.~V.~Kutsenko
\paper Properties of subfunctions of self-dual bent functions
\jour Prikl. Diskr. Mat. Suppl.
\yr 2022
\issue 15
\pages 26--30
\mathnet{http://mi.mathnet.ru/pdma572}
\crossref{https://doi.org/10.17223/2226308X/15/7}
Linking options:
  • https://www.mathnet.ru/eng/pdma572
  • https://www.mathnet.ru/eng/pdma/y2022/i15/p26
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:81
    Full-text PDF :34
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024