Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2022, Issue 15, Pages 22–25
DOI: https://doi.org/10.17223/2226308X/15/6
(Mi pdma571)
 

This article is cited in 1 scientific paper (total in 1 paper)

Discrete Functions

Lower bound for the number of bent functions at the minimum distance from Majorana — McFarland bent functions

D. A. Bykovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
Full-text PDF (577 kB) Citations (1)
References:
Abstract: The construction of bent functions at a certain distance from a given bent function is investigated. The criterion that the function obtained from the bent function $f$ by adding an indicator of an affine subspace of dimension $n$ is a bent function is proven, where $f$ belongs to the Maiorana — McFarland class $\mathcal{M}_{2n}$. It is shown that the lower bound $2^{2n+1} -2^n$ for the number of bent functions at the minimum distance from a bent function from the class $\mathcal{M}_{2n}$ is attained for prime $n \geq 5$. Bent functions are found for which the lower bound is attainable. It is shown that this lower bound is not attained for bent functions from the class $\mathcal{M}_{2n}$, where the permutation is not an APN function. For some distances, in particular $2^{2n-1}$, lower bounds for the number of bent functions in the class $\mathcal{M}_{2n}$ at these distances from bent functions in the class $\mathcal{C}$ are obtained.
Keywords: bent functions, boolean functions, minimum distance, Maiorana — McFarland class, lower bounds.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0018
Document Type: Article
UDC: 519.7
Language: Russian
Citation: D. A. Bykov, “Lower bound for the number of bent functions at the minimum distance from Majorana — McFarland bent functions”, Prikl. Diskr. Mat. Suppl., 2022, no. 15, 22–25
Citation in format AMSBIB
\Bibitem{Byk22}
\by D.~A.~Bykov
\paper Lower bound for the number of bent functions at the minimum distance from Majorana~--- McFarland bent functions
\jour Prikl. Diskr. Mat. Suppl.
\yr 2022
\issue 15
\pages 22--25
\mathnet{http://mi.mathnet.ru/pdma571}
\crossref{https://doi.org/10.17223/2226308X/15/6}
Linking options:
  • https://www.mathnet.ru/eng/pdma571
  • https://www.mathnet.ru/eng/pdma/y2022/i15/p22
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:89
    Full-text PDF :24
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024