Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2021, Issue 14, Pages 184–186
DOI: https://doi.org/10.17223/2226308X/14/43
(Mi pdma562)
 

Computational methods in discrete mathematics

Some subgroups of the Burnside group $B_0(2,5)$

A. A. Kuznetsova, A. S. Kuznetsovab

a M. F. Reshetnev Siberian State University of Science and Technologies
b Krasnoyarsk State Agricultural University
References:
Abstract: Let $ B_0(2,5) = \langle x, y \rangle $ be the largest finite two generator Burnside group of exponent five and order $ 5 ^ {34} $. We study a series of subgroups $ H_i = \langle a_i, b_i \rangle $ of the group $ B_0 (2,5) $, where $ a_0 = x $, $ b_0 = y $, $ a_i = a_ { i-1} b_ {i-1} $ and $ b_i = b_ {i-1} a_ {i-1} $ for $ i \in \mathbb {N} $. It has been found that $H_4$ is a commutative group. Therefore, $H_5$ is a cyclyc group and the series of subgroups is broken. The elements $ a_4 = xy ^ 2xyx ^ 2y ^ 2x ^ 2yxy ^ 2x $ and $ b_4 = yx ^ 2yxy ^ 2x ^ 2y ^ 2xyx ^ 2y $ of length $16$ generate an abelian subgroup of order $25$ in $ B_0 (2,5) $. Using computer calculations, we have found that there is no other pair of group words of length less than $16$ that generate a noncyclic abelian subgroup in $ B_0 (2,5) $.
Keywords: non-commutative cryptography, Burnside group.
Document Type: Article
UDC: 519.688
Language: Russian
Citation: A. A. Kuznetsov, A. S. Kuznetsova, “Some subgroups of the Burnside group $B_0(2,5)$”, Prikl. Diskr. Mat. Suppl., 2021, no. 14, 184–186
Citation in format AMSBIB
\Bibitem{KuzKuz21}
\by A.~A.~Kuznetsov, A.~S.~Kuznetsova
\paper Some subgroups of the Burnside group $B_0(2,5)$
\jour Prikl. Diskr. Mat. Suppl.
\yr 2021
\issue 14
\pages 184--186
\mathnet{http://mi.mathnet.ru/pdma562}
\crossref{https://doi.org/10.17223/2226308X/14/43}
Linking options:
  • https://www.mathnet.ru/eng/pdma562
  • https://www.mathnet.ru/eng/pdma/y2021/i14/p184
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:117
    Full-text PDF :52
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024