Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2021, Issue 14, Pages 154–158
DOI: https://doi.org/10.17223/2226308X/14/34
(Mi pdma553)
 

Applied Theory of Coding and Graphs

Bases over the field $\mathrm{GF(2)}$ generated by the Schur — Hadamard operation

K. L. Geut, S. S. Titov

Urals State University of Railway Transport, Ekaterinburg
References:
Abstract: The paper deals with the problem of constructing, describing and applying bases of vector spaces over the field $\mathrm{GF(2)}$ generated by the componentwise product operation up to degree $d$. This problem “Bases” was posed as unsolved in the Olympiad in cryptography NSUCRYPTO. In order to give a way to solve this problem with the Reed — Muller codes, we define the generating family $\mathcal{F}$ as a list of all string $i$ in a true table under condition: the word $x^1_i , \ldots, x^s_i$ has Hamming weight not superior $d$. The values of coefficients of function $f$ are determined recurrently, as in the proof of the theorem on ANF: the coefficient before composition for subset $T$ (cardinality does not exceed $d$) in the set $\{t^1,\ldots,t^s\}$ of arguments is determined as the sum of the values of $f$ and the values of the coefficients for the whole subset $R\subseteq T$. Hence, for all $s,d$, $s \geq d > 1$, there is a basis for which such a family exists, and the construction of the bases is described above. We propose to use general affine group on space $F^s$, $F=\mathrm{GF}(2)$, for obtaining the class of such bases in the condition of the problem.
Keywords: NSUCRYPTO, orthomorphisms, vector space basis, Reed — Muller code.
Bibliographic databases:
Document Type: Article
UDC: 512.56, 519.7
Language: Russian
Citation: K. L. Geut, S. S. Titov, “Bases over the field $\mathrm{GF(2)}$ generated by the Schur — Hadamard operation”, Prikl. Diskr. Mat. Suppl., 2021, no. 14, 154–158
Citation in format AMSBIB
\Bibitem{GeuTit21}
\by K.~L.~Geut, S.~S.~Titov
\paper Bases over the field $\mathrm{GF(2)}$ generated by the Schur~--- Hadamard operation
\jour Prikl. Diskr. Mat. Suppl.
\yr 2021
\issue 14
\pages 154--158
\mathnet{http://mi.mathnet.ru/pdma553}
\crossref{https://doi.org/10.17223/2226308X/14/34}
\elib{https://elibrary.ru/item.asp?id=46580349}
Linking options:
  • https://www.mathnet.ru/eng/pdma553
  • https://www.mathnet.ru/eng/pdma/y2021/i14/p154
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:95
    Full-text PDF :33
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024