Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2021, Issue 14, Pages 132–134
DOI: https://doi.org/10.17223/2226308X/14/28
(Mi pdma547)
 

Mathematical Foundations of Computer Security

zk-SNARK-based data privacy method

D. O. Kondyrevabc

a JetBrains Research
b Novosibirsk State University
c Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: The paper presents a method for ensuring data confidentiality with the possibility of validation based on the zk-SNARK zero-knowledge proof protocol. This method allows the creation of zk-SNARK-based algorithms in Ethereum smart contracts code using high-level basic cryptographic schemes that implement logical operations (AND, OR, NOT) and comparison operations. Cryptographic schemes are implemented on the basis of the libsnark library as a rank-1 constraint systems (R1CS). The Ethereum virtual machine has been modified to include functions for schema creation, proof generation and verification.
Keywords: distributed systems, blockchain, zero-knowledge proof, zk-SNARK, Ethereum platform.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2019-1613
Document Type: Article
UDC: 004.75
Language: Russian
Citation: D. O. Kondyrev, “zk-SNARK-based data privacy method”, Prikl. Diskr. Mat. Suppl., 2021, no. 14, 132–134
Citation in format AMSBIB
\Bibitem{Kon21}
\by D.~O.~Kondyrev
\paper zk-SNARK-based data privacy method
\jour Prikl. Diskr. Mat. Suppl.
\yr 2021
\issue 14
\pages 132--134
\mathnet{http://mi.mathnet.ru/pdma547}
\crossref{https://doi.org/10.17223/2226308X/14/28}
Linking options:
  • https://www.mathnet.ru/eng/pdma547
  • https://www.mathnet.ru/eng/pdma/y2021/i14/p132
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:149
    Full-text PDF :90
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024