Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2021, Issue 14, Pages 57–58
DOI: https://doi.org/10.17223/2226308X/14/11
(Mi pdma531)
 

Discrete Functions

On derivatives of Boolean bent functions

A. S. Shaporenkoabc

a Novosibirsk State University
b JetBrains Research
c Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: Bent function can be defined as a Boolean function $f(x)$ in $n$ variables ($n$ is even) such that for any nonzero vector $y$ its derivative $D_yf(x)=f(x)\oplus f(x\oplus y)$ is balanced, that is, it takes values $0$ and $1$ equally often. Whether every balanced function is a derivative of some bent function or not is an open problem. In this paper, special case of this problem is studied. It is proven that every non-constant affine function in $n$ variables, $n\geqslant4$, $n$ is even, is a derivative of $(2^{n-1}-1)|\mathcal{B}_{n-2}|^2$ bent functions, where $|\mathcal{B}_{n-2}|$ is the number of bent functions in $n-2$ variables. New iterative lower bounds for the number of bent functions are presented.
Keywords: Boolean functions, bent functions, derivatives of bent function, lower bounds for the number of bent functions.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 0314-2019-0017
Document Type: Article
UDC: 519.7
Language: Russian
Citation: A. S. Shaporenko, “On derivatives of Boolean bent functions”, Prikl. Diskr. Mat. Suppl., 2021, no. 14, 57–58
Citation in format AMSBIB
\Bibitem{Sha21}
\by A.~S.~Shaporenko
\paper On derivatives of Boolean bent functions
\jour Prikl. Diskr. Mat. Suppl.
\yr 2021
\issue 14
\pages 57--58
\mathnet{http://mi.mathnet.ru/pdma531}
\crossref{https://doi.org/10.17223/2226308X/14/11}
Linking options:
  • https://www.mathnet.ru/eng/pdma531
  • https://www.mathnet.ru/eng/pdma/y2021/i14/p57
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:98
    Full-text PDF :30
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024