Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2021, Issue 14, Pages 55–57
DOI: https://doi.org/10.17223/2226308X/14/10
(Mi pdma530)
 

Discrete Functions

A conditions for uniqueness reresentation of $p$-logic function into disjunctive product of functions

A. V. Cheremushkin

Academy of Cryptography of Russian Federation
References:
Abstract: Let $f:V_n \rightarrow {\mathbb Z}_p$ be $p$-logic function, $n\ge 2$, and $V_n={\mathbb Z}_p^n$ is considered as a vector space over ${\mathbb Z}_p$. A disjunctive decomposition of $f$ into a product of $p$-logic functions under various linear transformations of arguments is considered. Function $f$ is linearly decomposable into disjunctive product if there exists a linear transformation $A$ of the vector space $V_n$ such that
$$ f(xA)= f_1(x_1,\ldots , x_k) f_2(x_{k+1},\ldots , x_n) $$
for some $k$, $1\le k <n$, and functions $f_1$ and $f_2$. We say that argument $x_n$ of functions $f(x)$ is essential iff $f(x)\neq f(x + e_n)$ for $e_n=(0,\ldots, 0,1)$. The main result is: if all arguments of all functions $f(xA)$ under linear substitutuions $A$ of the vector space $V_n$ are essential, the set $\{a\in V_n: f(a)\neq 0\}$ is not contained in hyperplane of $V_n$, and $f$ is linearly decompsable into the disjunctive product $f_1\cdot \dots \cdot f_m$, where $m$ is maximal, then the direct sum of subspaces $V_n=V^{(1)}+\ldots +V^{(m)}$ is unique and invariant under the stabilizer group of the function $f$ in general linear group.
Keywords: $p$-logic functions, disjunctive product, linear transformation.
Document Type: Article
UDC: 519.719.325
Language: Russian
Citation: A. V. Cheremushkin, “A conditions for uniqueness reresentation of $p$-logic function into disjunctive product of functions”, Prikl. Diskr. Mat. Suppl., 2021, no. 14, 55–57
Citation in format AMSBIB
\Bibitem{Che21}
\by A.~V.~Cheremushkin
\paper A conditions for uniqueness reresentation of $p$-logic function into disjunctive product of functions
\jour Prikl. Diskr. Mat. Suppl.
\yr 2021
\issue 14
\pages 55--57
\mathnet{http://mi.mathnet.ru/pdma530}
\crossref{https://doi.org/10.17223/2226308X/14/10}
Linking options:
  • https://www.mathnet.ru/eng/pdma530
  • https://www.mathnet.ru/eng/pdma/y2021/i14/p55
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024