Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2021, Issue 14, Pages 48–51
DOI: https://doi.org/10.17223/2226308X/14/8
(Mi pdma528)
 

Discrete Functions

Improved estimates for the number of $(n, m, k)$-resilient and correlation-immune Boolean mappings

K. N. Pankov

Moscow Technical University of Communications and Informatics
References:
Abstract: Improved lower and upper bounds for $\left| {K\left({n,m,k} \right)} \right|$ (the number of correlation-immune of order $k$ binary mappings) and $\left| {R\left({m,n,k} \right)} \right|$ (the number of $(n,m,k)$-resilient binary mappings) are obtained. By $M\left( {n,k} \right)$ we denote ${\sum\limits_{s=0}^k {\displaystyle{n \choose s}}}$, and by $T\left( {n,m,k} \right)$ — the expression $\left( {2^m-1} \right)\left(\dfrac{n-k}{2}\displaystyle{n \choose k}+M\left( {n,k} \right)\log _2\sqrt {\dfrac{\pi }{2}}\right) $. If $m\geq 5$ and $k\left( 5+2{{\log }_{2}}n \right)+6m\le n\left( {1}/{3}-\gamma \right)$ for fixed $0<\gamma <{1}/{3}$, then there is $n_0$ such that, for any $\varepsilon_1,\varepsilon_2$ and $n>n_0$,
$$ \left( \frac{{{m^2} - m - 12}}{2} + 17 \right)M\left( {n,k} \right)- {\varepsilon _1} \le \log _2\left| {R\left({n,m,k} \right)} \right|-m2^n+T\left( {n,m,k} \right)\le $$

$$ \le \left( {\left( {16m - 47} \right){2^{m - 4}} - m + 3} \right)M\left( {n,k} \right)+{\varepsilon _2}. $$
If $m\geq 5$ and $k\left( 5+2{{\log }_{2}}n \right)+6m\le n\left( {5}/{18}-\gamma \right)$ for fixed $0<\gamma <{5}/{18}$, then there is $n_0$ such that, for any $\varepsilon_1,\varepsilon_2$ and $n>n_0$,
$$ \left( \frac{{{m^2} - m - 12}}{2} + 17 \right)M\left( {n,k} \right)- {\varepsilon _1} \le \log _2\left| {K\left({n,m,k} \right)} \right|-m2^n+m2^{m-1}+T\left( {n,m,k} \right)- $$

$$ -{\left( {\frac{n+1+\log _2 \pi }{2}-k} \right)\left( {2^m-1} \right)}\le \left( {\left( {16m - 47} \right){2^{m - 4}} - m + 3} \right)M\left( {n,k} \right)+{\varepsilon _2}. $$
Keywords: distributed ledger, blockchain, information security, resilient vectorial Boolean function, correlation-immune function.
Document Type: Article
UDC: 519.7
Language: Russian
Citation: K. N. Pankov, “Improved estimates for the number of $(n, m, k)$-resilient and correlation-immune Boolean mappings”, Prikl. Diskr. Mat. Suppl., 2021, no. 14, 48–51
Citation in format AMSBIB
\Bibitem{Pan21}
\by K.~N.~Pankov
\paper Improved estimates for the number of $(n, m, k)$-resilient and correlation-immune Boolean mappings
\jour Prikl. Diskr. Mat. Suppl.
\yr 2021
\issue 14
\pages 48--51
\mathnet{http://mi.mathnet.ru/pdma528}
\crossref{https://doi.org/10.17223/2226308X/14/8}
Linking options:
  • https://www.mathnet.ru/eng/pdma528
  • https://www.mathnet.ru/eng/pdma/y2021/i14/p48
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:109
    Full-text PDF :42
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024