Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2021, Issue 14, Pages 42–45
DOI: https://doi.org/10.17223/2226308X/14/6
(Mi pdma526)
 

This article is cited in 1 scientific paper (total in 1 paper)

Discrete Functions

On some properties of self-dual generalized bent functions

A. V. Kutsenkoab

a Novosibirsk State University
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Full-text PDF (644 kB) Citations (1)
References:
Abstract: Bent functions of the form $\mathbb{F}_2^n\rightarrow\mathbb{Z}_q$, where $q\geqslant2$ is a positive integer, are known as generalized bent (gbent) functions. A gbent function for which it is possible to define a dual gbent function is called regular. A regular gbent function is said to be self-dual if it coincides with its dual. We obtain the necessary and sufficient conditions for the self-duality of gbent functions from Eliseev — Maiorana — McFarland class. We find the complete Lee distance spectrum between all self-dual functions in this class and obtain that the minimal Lee distance between them is equal to $q\cdot2^{n-3}$. For Boolean case, there are no affine bent functions and self-dual bent functions, while it is known that for generalized case affine bent functions exist, in particular, when $q$ is divisible by $4$. We prove the non-existence of affine self-dual gbent functions for any natural even $q$. A new class of isometries preserving self-duality of a gbent function is presented. Based on this, a refined classification of self-dual gbent functions of the form $\mathbb{F}_2^4\rightarrow\mathbb{Z}_4$ is given.
Keywords: self-dual bent function, generalized bent function, Eliseev — Maiorana — McFarland bent function, Lee distance.
Document Type: Article
UDC: 519.7
Language: Russian
Citation: A. V. Kutsenko, “On some properties of self-dual generalized bent functions”, Prikl. Diskr. Mat. Suppl., 2021, no. 14, 42–45
Citation in format AMSBIB
\Bibitem{Kut21}
\by A.~V.~Kutsenko
\paper On some properties of self-dual generalized bent functions
\jour Prikl. Diskr. Mat. Suppl.
\yr 2021
\issue 14
\pages 42--45
\mathnet{http://mi.mathnet.ru/pdma526}
\crossref{https://doi.org/10.17223/2226308X/14/6}
Linking options:
  • https://www.mathnet.ru/eng/pdma526
  • https://www.mathnet.ru/eng/pdma/y2021/i14/p42
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:117
    Full-text PDF :56
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024