Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2020, Issue 13, Pages 121–124
DOI: https://doi.org/10.17223/2226308X/13/36
(Mi pdma516)
 

Computational methods in discrete mathematics

Coding information by Walsh matrices

M. S. Bespalov, K. M. Malkova

Vladimir State University
References:
Abstract: The representation of the general linear group $\mathrm{GL}(n, 2) $ by the automorphism subgroup $\mathrm{GL}(N, 2) $ under the multiplicative notation in its action in the space $ \mathbb{R} ^ N $, where $ N = 2 ^ n $, is considered. Each matrix as an element of the group $\mathrm{GL}(n, 2) $ defines ordering: the group $ \mathbb{Z}_2 ^ n $ and its group of characters, which are popular in digital processing of information in the form of discrete Walsh functions. On the basis of the fast Walsh transform and this correspondence the authors created a software prototype of an automatic output signal coding system. The essence of the proposed software product is the number of possible permutations, which is calculated by the formula $(2^n-2^0)(2^n-2^1)\ldots (2^n-2^{n-1})$ for $n$-th order matrices. Based on the program, it is possible to organize a multi-channel system of reconfigurable decoders when transmitting hidden information over open communication channels.
Keywords: discrete Walsh functions, code matrix, fast Walsh transform, Kronecker product.
Document Type: Article
UDC: 004.056.55
Language: Russian
Citation: M. S. Bespalov, K. M. Malkova, “Coding information by Walsh matrices”, Prikl. Diskr. Mat. Suppl., 2020, no. 13, 121–124
Citation in format AMSBIB
\Bibitem{BesMal20}
\by M.~S.~Bespalov, K.~M.~Malkova
\paper Coding information by Walsh matrices
\jour Prikl. Diskr. Mat. Suppl.
\yr 2020
\issue 13
\pages 121--124
\mathnet{http://mi.mathnet.ru/pdma516}
\crossref{https://doi.org/10.17223/2226308X/13/36}
Linking options:
  • https://www.mathnet.ru/eng/pdma516
  • https://www.mathnet.ru/eng/pdma/y2020/i13/p121
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:159
    Full-text PDF :134
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024