Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2020, Issue 13, Pages 100–103
DOI: https://doi.org/10.17223/2226308X/13/29
(Mi pdma509)
 

This article is cited in 1 scientific paper (total in 1 paper)

Applied Theory of Coding, Automata and Graphs

On number of inaccessible states in finite dynamic systems of complete graphs orientations

A. V. Zharkova

Saratov State University
Full-text PDF (746 kB) Citations (1)
References:
Abstract: Finite dynamic systems of complete graphs orientations are considered. The states of such a system $(\Gamma_{K_n}, \alpha)$, $n>1$, are all possible orientations of a given complete graph $K_n$, and evolutionary function $\alpha$ transforms a given state (tournament) ${G}$ by reversing all arcs in ${G}$ that enter into sinks, and there are no other differences between the given ${G}$ and the next $\alpha({G})$ states. In this paper, formulas for calculating the number of inaccessible and the number of accessible states in finite dynamic systems of complete graphs orientations are given. Namely, in the considered system $(\Gamma_{K_n}, \alpha)$, $n>1$, the state ${G}\in \Gamma_{K_n}$ is inaccessible if and only if in this digraph ${G}$ there is no source and there is a sink. In the finite dynamic system $(\Gamma_{K_n}, \alpha)$, $n>1$, the number of inaccessible states is $n \big(2^{{(n-1)(n-2)}/{2}} - (n-1) 2^{{(n-2)(n-3)}/{2}}\big)$ and the number of accessible states is $2^{{n(n-1)}/{2}} - n \big(2^{{(n-1)(n-2)}/{2}} - (n-1) 2^{{(n-2)(n-3)}/{2}}\big)$. The corresponding table is given for the finite dynamic systems of complete graphs orientations with the number of vertices from $2$ to $10$.
Keywords: accessible state, complete graph, evolutionary function, finite dynamic system, graph, graph orientation, inaccessible state, index, sink, source, tournament.
Document Type: Article
UDC: 519.1
Language: Russian
Citation: A. V. Zharkova, “On number of inaccessible states in finite dynamic systems of complete graphs orientations”, Prikl. Diskr. Mat. Suppl., 2020, no. 13, 100–103
Citation in format AMSBIB
\Bibitem{Zha20}
\by A.~V.~Zharkova
\paper On number of inaccessible states in finite dynamic systems of complete graphs orientations
\jour Prikl. Diskr. Mat. Suppl.
\yr 2020
\issue 13
\pages 100--103
\mathnet{http://mi.mathnet.ru/pdma509}
\crossref{https://doi.org/10.17223/2226308X/13/29}
Linking options:
  • https://www.mathnet.ru/eng/pdma509
  • https://www.mathnet.ru/eng/pdma/y2020/i13/p100
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:86
    Full-text PDF :38
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024