Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2020, Issue 13, Pages 98–100
DOI: https://doi.org/10.17223/2226308X/13/28
(Mi pdma508)
 

Applied Theory of Coding, Automata and Graphs

New estimates for dimension of Reed — Muller subcodes with maximum Hadamard square

V. V. Vysotskayaab

a Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics
b Лаборатория криптографии НПК «Криптонит», г. Москва
References:
Abstract: The existence of some structure in a code can lead to decreasing the security of the whole system built on it. Often subcodes are used to “disguise” the code as a “general-looking” one. However, the security of subcodes with Hadamard square equal to the square of the base code is reduced to the security of the latter. Thus, it is necessary to take this property into account during both synthesis and cryptanalysis of code schemes. In the paper, the authors analyse the minimum number of monomials of degree $r$, which, when added to the code $RM(r-1, m)$, result in a subcode with maximal Hadamard square, that is, coinciding with $RM(2r,m)$. The problem is reformulated in terms of hypergraphs where vertices correspond to variables and each monomial of degree $k$ is associated with a $k$-edge. A set of $r$-edges covering all $2r$-sets is searched. The minimum size of such a set is estimated from below as $w(m,r) \ge \sqrt{\gamma +2\text{C}_m^{2r}}+\sqrt{\gamma}$, where $\gamma = \sum\limits_{i=\max\{1,3r-m\}}^{r-1}\text{C}_r^i$. A greedy algorithm constructing a “good” set is proposed to obtain an upper bound. At each step the algorithm adds a new $r$-edge choosing the “least covered” vertices.
Keywords: post-quantum cryptography, code-based cryptography, Reed — Muller subcodes, Reed — Muller codes, Hadamard product, McEliece cryptosystem.
Document Type: Article
UDC: 003.26, 519.725, 519.176
Language: Russian
Citation: V. V. Vysotskaya, “New estimates for dimension of Reed — Muller subcodes with maximum Hadamard square”, Prikl. Diskr. Mat. Suppl., 2020, no. 13, 98–100
Citation in format AMSBIB
\Bibitem{Vys20}
\by V.~V.~Vysotskaya
\paper New estimates for dimension of Reed~--- Muller subcodes with maximum Hadamard square
\jour Prikl. Diskr. Mat. Suppl.
\yr 2020
\issue 13
\pages 98--100
\mathnet{http://mi.mathnet.ru/pdma508}
\crossref{https://doi.org/10.17223/2226308X/13/28}
Linking options:
  • https://www.mathnet.ru/eng/pdma508
  • https://www.mathnet.ru/eng/pdma/y2020/i13/p98
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:108
    Full-text PDF :33
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024