Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2020, Issue 13, Pages 85–93
DOI: https://doi.org/10.17223/2226308X/13/25
(Mi pdma505)
 

Mathematical Foundations of Computer Security

Neural network obfuscation for computations over encrypted data

V. L. Eliseevab

a Infotecs, Moscow
b National Research University "Moscow Power Engineering Institute"
References:
Abstract: An approach to neural network cryptographic obfuscation of computations is proposed. Applying the previously obtained results on the property of strict obfuscation of indistinguishability for a neural network approximator, we propose to use neural networks to perform arithmetic and other operations on encrypted data, thus realizing the idea of using homomorphic encryption to perform trusted computations in an untrusted environment. The cryptographic properties of this mechanism are evaluated and compared with traditional approaches to encryption based on the secret key. The advantages and disadvantages of neural networks in relation to the problem of obfuscation and processing of encrypted data are discussed.
Keywords: artificial neural network, obfuscation, homomorphic encryption, secrecy estimation.
Document Type: Article
UDC: 004.056.53, 004.032.26
Language: Russian
Citation: V. L. Eliseev, “Neural network obfuscation for computations over encrypted data”, Prikl. Diskr. Mat. Suppl., 2020, no. 13, 85–93
Citation in format AMSBIB
\Bibitem{Eli20}
\by V.~L.~Eliseev
\paper Neural network obfuscation for computations over encrypted data
\jour Prikl. Diskr. Mat. Suppl.
\yr 2020
\issue 13
\pages 85--93
\mathnet{http://mi.mathnet.ru/pdma505}
\crossref{https://doi.org/10.17223/2226308X/13/25}
Linking options:
  • https://www.mathnet.ru/eng/pdma505
  • https://www.mathnet.ru/eng/pdma/y2020/i13/p85
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:219
    Full-text PDF :432
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024