Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2020, Issue 13, Pages 69–71
DOI: https://doi.org/10.17223/2226308X/13/21
(Mi pdma501)
 

Mathematical Methods of Cryptography

One approach to constructing a multiply transitive class of block transformations

I. V. Cherednik

MIREA — Russian Technological University, Moscow
References:
Abstract: Let $\Omega$ be an arbitrary finite set, $\mathcal B(\Omega)$ — the collection of all binary operations defined on the set $\Omega$, $\mathcal B^*(\Omega)$ — the family of all binary operations that are invertible in the right variable, $x_1,\ldots,x_n$ — variables over $\Omega$, and $*_1,\ldots,*_k$ — general symbols of binary operations. A fixed cortege $W=(w_1,\ldots,w_m)$ of formulas in the alphabet $\{x_1,\ldots,x_n,*_1,\ldots,*_k\}$ implements the mapping $W^{F_1,\ldots,F_k}\colon\Omega^n\to\Omega^m$ when replacing symbols $*_1,\ldots,*_k$ with an arbitrary binary operations $F_1,\ldots, F_k\in\mathcal B(\Omega)$, respectively. In this paper we offer a visual representation of the transformation family $\{W^{F_1,\ldots,F_k} : F_1,\ldots,F_k\in\mathcal B^*(\Omega)\}$ in the form of a binary functional network. This representation allows us to strictly describe the methods of research on the multiply transitivity of an arbitrary family $\{W^{F_1,\ldots,F_k} : F_1,\ldots,F_k\in\mathcal B^*(\Omega)\}$. In addition, network view makes it possible to construct cortege of formulas $W=(w_1,\ldots,w_n)$ such that the family $\{W^{F_1,\ldots,F_k} : F_1,\ldots,F_k\in\mathcal B^*(\Omega)\}$ is multiply transitive. Moreover, some block ciphers (Blowfish, Twofish, etc), in which the S-boxes depend on the key, can be “approximated” by family of the form $\{W^{F_1,\ldots,F_k} : F_1,\ldots,F_k\in\mathcal B^*(\Omega)\}$ and, as a result, it becomes possible to evaluate the multiple transitivity of such ciphers.
Keywords: block transformation, multiply transitive class of block transformations, functional binary network.
Document Type: Article
UDC: 519.714.5
Language: Russian
Citation: I. V. Cherednik, “One approach to constructing a multiply transitive class of block transformations”, Prikl. Diskr. Mat. Suppl., 2020, no. 13, 69–71
Citation in format AMSBIB
\Bibitem{Che20}
\by I.~V.~Cherednik
\paper One approach to constructing a multiply transitive class of block transformations
\jour Prikl. Diskr. Mat. Suppl.
\yr 2020
\issue 13
\pages 69--71
\mathnet{http://mi.mathnet.ru/pdma501}
\crossref{https://doi.org/10.17223/2226308X/13/21}
Linking options:
  • https://www.mathnet.ru/eng/pdma501
  • https://www.mathnet.ru/eng/pdma/y2020/i13/p69
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024