Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2020, Issue 13, Pages 51–54
DOI: https://doi.org/10.17223/2226308X/13/15
(Mi pdma495)
 

This article is cited in 3 scientific papers (total in 3 papers)

Mathematical Methods of Cryptography

Constructions of non-endomorphic perfect ciphers

N. V. Medvedeva, S. S. Titov

Urals State University of Railway Transport, Ekaterinburg
Full-text PDF (566 kB) Citations (3)
References:
Abstract: This work is dealing with constructions of Shannon perfect ciphers (which are absolutely immune against the attack on ciphertext, according to Shannon). Based on the equivalence relation on the set of keys, sufficient conditions are obtained for that the encoding tables of non-endomorphic (endomorphic) perfect ciphers do not contain Latin rectangles (squares). Key equivalence refers to the following: two different keys are equivalent in cipher-value $x_i$ if the cipher-value $x_i$ on these keys is encrypted to the same code designation. In this case, pairwise different keys $k_1, k_2, k_3,\ldots , k_{n-1}, k_n$ form a cycle of length $n$ if there is such a sequence of cipher-values that: 1) the neighboring cipher-values are different; 2) the keys $k_1, k_2, k_3,\ldots , k_{n-1}, k_n, k_1$ are sequentially equivalent in the corresponding cipher-values. If $n$ is an odd number, then the keys $k_1, k_2,\ldots , k_n$ form an odd-length cycle. It is proved that if the keys $k_1, k_2, \ldots , k_n$ form an odd-length cycle, then this encoding table does not contain Latin rectangles. Example of such constructions is given.
Keywords: perfect ciphers, endomorphic ciphers, non-endomorphic ciphers.
Bibliographic databases:
Document Type: Article
UDC: 512.64, 519.21, 519.72
Language: Russian
Citation: N. V. Medvedeva, S. S. Titov, “Constructions of non-endomorphic perfect ciphers”, Prikl. Diskr. Mat. Suppl., 2020, no. 13, 51–54
Citation in format AMSBIB
\Bibitem{MedTit20}
\by N.~V.~Medvedeva, S.~S.~Titov
\paper Constructions of non-endomorphic perfect ciphers
\jour Prikl. Diskr. Mat. Suppl.
\yr 2020
\issue 13
\pages 51--54
\mathnet{http://mi.mathnet.ru/pdma495}
\crossref{https://doi.org/10.17223/2226308X/13/15}
\elib{https://elibrary.ru/item.asp?id=43990166}
Linking options:
  • https://www.mathnet.ru/eng/pdma495
  • https://www.mathnet.ru/eng/pdma/y2020/i13/p51
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:79
    Full-text PDF :56
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024