Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2020, Issue 13, Pages 35–37
DOI: https://doi.org/10.17223/2226308X/13/10
(Mi pdma490)
 

Discrete Functions

Connections between quaternary and component Boolean bent functions

A. S. Shaporenkoab

a Novosibirsk State University
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: This paper is about quaternary bent functions. Function $g:\mathbb{Z}_4^n\rightarrow\mathbb{Z}_4$ is called quaternary in $n$ variables. It was proven that bentness of a quaternary function $g(x+2y)=a(x,y)+2b(x,y)$ doesn't directly depend on the bentness of Boolean functions $b$ and $a\oplus b$. The number of quaternary bent functions in one and two variables is obtained with a description of properties of Boolean functions $b$ and $a\oplus b$. Two simple constructions of quaternary bent functions in any number of variables are presented. The first one is given by the formula $g(x_1+2x_{n+1},\ldots,x_n+2x_{2n})=\sum\limits_{i=1}^n2x_ix_{i+n} + cx_j$, $c\in\mathbb{Z}_2$ and $j\in\{1,\ldots,n\}$. The second construction allows one to get a bent function $g'(x+2y)=3a(x,y) + 2b(x,y)$, where $g(x+2y)=a(x,y) + 2b(x,y)$ is bent.
Keywords: quaternary functions, Boolean functions, bent function.
Document Type: Article
UDC: 519.7
Language: Russian
Citation: A. S. Shaporenko, “Connections between quaternary and component Boolean bent functions”, Prikl. Diskr. Mat. Suppl., 2020, no. 13, 35–37
Citation in format AMSBIB
\Bibitem{Sha20}
\by A.~S.~Shaporenko
\paper Connections between quaternary and component Boolean bent functions
\jour Prikl. Diskr. Mat. Suppl.
\yr 2020
\issue 13
\pages 35--37
\mathnet{http://mi.mathnet.ru/pdma490}
\crossref{https://doi.org/10.17223/2226308X/13/10}
Linking options:
  • https://www.mathnet.ru/eng/pdma490
  • https://www.mathnet.ru/eng/pdma/y2020/i13/p35
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:104
    Full-text PDF :41
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024