Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2020, Issue 13, Pages 31–32
DOI: https://doi.org/10.17223/2226308X/13/8
(Mi pdma488)
 

Discrete Functions

On the decomposition of a vectorial Boolean function into a composition of two functions

G. M. Pintus

Novosibirsk State University
References:
Abstract: In the paper, we prove that if a vectorial Boolean function $F$ in $n$ variables, $\deg(F)=d>2$, is decomposable, then the function $ F '= A_2 \circ F \circ A_1 $, where $ A_1, A_2 $ are arbitrary affine $ (n, n) $-permutations, is also decomposable; and if $F(x)=G(H(x))$, $\max\{\deg(F),\deg(H)\}=d'<d$, function $H$ is invertible and $ \deg (H ^ {- 1}) \leq d'$, then the function $ F^{''} = F + A_0 $ is decomposable for any affine function $A_0$. The construction of a decomposable vectorial Boolean function of the third degree in an arbitrary number of variables is presented. A computational experiment showed that all vectorial Boolean functions of the third degree in three variables are decomposable.
Keywords: vectorial Boolean function, decomposition, threshold implementation.
Document Type: Article
UDC: 519.7
Language: Russian
Citation: G. M. Pintus, “On the decomposition of a vectorial Boolean function into a composition of two functions”, Prikl. Diskr. Mat. Suppl., 2020, no. 13, 31–32
Citation in format AMSBIB
\Bibitem{Pin20}
\by G.~M.~Pintus
\paper On the decomposition of a vectorial Boolean function into a composition of two functions
\jour Prikl. Diskr. Mat. Suppl.
\yr 2020
\issue 13
\pages 31--32
\mathnet{http://mi.mathnet.ru/pdma488}
\crossref{https://doi.org/10.17223/2226308X/13/8}
Linking options:
  • https://www.mathnet.ru/eng/pdma488
  • https://www.mathnet.ru/eng/pdma/y2020/i13/p31
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024