Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2020, Issue 13, Pages 18–21
DOI: https://doi.org/10.17223/2226308X/13/4
(Mi pdma484)
 

This article is cited in 4 scientific papers (total in 4 papers)

Discrete Functions

On the continuation to bent functions and upper bounds on their number

S. V. Agievich

Research Institute for Applied Problems of Mathematics and Informatics, Belarusian State University, Minsk
Full-text PDF (669 kB) Citations (4)
References:
Abstract: A Boolean bent function $f$ of $n$ variables is a continuation of a Boolean function $g$ of $k<n$ variables if $g$ is a restriction of $f$ to a fixed affine plane of dimension $k$. We prove that a continuation always exists if $k\leq n/2$. We obtain an upper bound for the number of continuations. The bound is strengthened in the case $k=n-1$, when $g$ is a near-bent function. As a result, we improve the known upper bounds for the number of bent functions. More precisely, we show that for even $n\geq 6$ there are no more than
$$ c_n 2^{2^{n-2}-n/2+5/2} \left(\frac{B(n/2,n-1)-B(n/2-1,n-1)}{2^{2^{n/2}-n/2-1}} +B(n/2-1,n-1)\right) $$
bent functions of $n$ variables. Here $c_n=\exp(-1/2+23/(18\cdot 2^{n-2}))/\sqrt{\pi}$ and $B(d,n)=2^{\binom{n}{0}+\binom{n}{1}+\ldots+\binom{n}{d}}$.
Keywords: bent function, number of bent functions, near-bent function, affine plane.
Bibliographic databases:
Document Type: Article
UDC: 519.7
Language: Russian
Citation: S. V. Agievich, “On the continuation to bent functions and upper bounds on their number”, Prikl. Diskr. Mat. Suppl., 2020, no. 13, 18–21
Citation in format AMSBIB
\Bibitem{Agi20}
\by S.~V.~Agievich
\paper On the continuation to bent functions and upper bounds on their number
\jour Prikl. Diskr. Mat. Suppl.
\yr 2020
\issue 13
\pages 18--21
\mathnet{http://mi.mathnet.ru/pdma484}
\crossref{https://doi.org/10.17223/2226308X/13/4}
\elib{https://elibrary.ru/item.asp?id=43990155}
Linking options:
  • https://www.mathnet.ru/eng/pdma484
  • https://www.mathnet.ru/eng/pdma/y2020/i13/p18
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024