Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2020, Issue 13, Pages 12–17
DOI: https://doi.org/10.17223/2226308X/13/3
(Mi pdma483)
 

This article is cited in 1 scientific paper (total in 1 paper)

Theoretical Foundations of Applied Discrete Mathematics

An algorithm for computing the Stickelberger elements for imaginary multiquadratic fields

D. O. Olefirenko, E. A. Kirshanova, E. S. Malygina, S. A. Novoselov

Immanuel Kant Baltic Federal University, Kaliningrad
Full-text PDF (742 kB) Citations (1)
References:
Abstract: In this paper we present an algorithm for computing the Stickelberger ideal for multiquadratic fields $K=\mathbb{Q}(\sqrt{d_1}, \sqrt{d_2},\ldots,\sqrt{d_n})$, where $d_i \equiv 1 \pmod 4$ for $i=1,\ldots,n$ and $d_i$'s are pair-wise co-prime. Our result is based on the work of R. Kucera [J. Number Theory 56, 1996]. We systematize the ideas of this work, put them into explicit algorithms, prove their correctness and complexity. For $2^n = [K : \mathbb{Q}]$, our algorithm runs for time $\widetilde{\mathcal{O}}(2^n)$. We hope that the obtained results will serve as the first step towards solving the shortest vector problem for ideals of multiquadratic fields, which is the core problem in lattice-based cryptography.
Keywords: multiquadratic number field, Stickelberger ideal, Stickelberger element, the shortest vector problem.
Document Type: Article
UDC: 511.48
Language: Russian
Citation: D. O. Olefirenko, E. A. Kirshanova, E. S. Malygina, S. A. Novoselov, “An algorithm for computing the Stickelberger elements for imaginary multiquadratic fields”, Prikl. Diskr. Mat. Suppl., 2020, no. 13, 12–17
Citation in format AMSBIB
\Bibitem{OleKirMal20}
\by D.~O.~Olefirenko, E.~A.~Kirshanova, E.~S.~Malygina, S.~A.~Novoselov
\paper An algorithm for computing the Stickelberger elements for imaginary multiquadratic fields
\jour Prikl. Diskr. Mat. Suppl.
\yr 2020
\issue 13
\pages 12--17
\mathnet{http://mi.mathnet.ru/pdma483}
\crossref{https://doi.org/10.17223/2226308X/13/3}
Linking options:
  • https://www.mathnet.ru/eng/pdma483
  • https://www.mathnet.ru/eng/pdma/y2020/i13/p12
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:104
    Full-text PDF :46
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024