Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2020, Issue 13, Pages 6–8
DOI: https://doi.org/10.17223/2226308X/13/1
(Mi pdma481)
 

This article is cited in 1 scientific paper (total in 1 paper)

Theoretical Foundations of Applied Discrete Mathematics

Refractive bijections in Steiner triples

M. V. Vedunova, K. L. Geut, A. O. Ignatova, S. S. Titov

Urals State University of Railway Transport, Ekaterinburg
Full-text PDF (496 kB) Citations (1)
References:
Abstract: The paper deals with refractive bijections in Steiner triples used in the construction of matroids and secret sharing schemes. Refractors are understood to mean mappings $F$ of a quasigroup into itself satisfying the condition $F (x * y) \neq F (x) * F (y)$ for any $x \neq y$. The necessary conditions for the existence of APN-bijections in $\mathrm{GF}(2^n)$ are found, for $N=7$ the superposition of any two refractive bijections is not refractive. It is found that for $N=9$, $13$ and $2^n-1$ elements for odd $n$ not divisible by three, there are three Steiner triples systems without common triples. Refractive bijections are proposed for systems of Steiner triples without common triples for $N=13$. A counterexample is obtained to the hypothesis that each homogeneous matroid defines a certain block scheme using sets of refractive bijections, for $N=7$ such $S, S', S''$ do not exist. Functions that are APN-bijections are given. The condition allowing to construct homogeneous matroids that are not reduced to block scheme used in secret sharing schemes using Steiner linear triples systems is revealed, and a refractive bijection that is not an APN-function is also found, for instance $F(x)=x^{-3}$.
Keywords: refracting bijections, Steiner quasigroups, matroids.
Document Type: Article
UDC: 519.151, 519.725, 519.165
Language: Russian
Citation: M. V. Vedunova, K. L. Geut, A. O. Ignatova, S. S. Titov, “Refractive bijections in Steiner triples”, Prikl. Diskr. Mat. Suppl., 2020, no. 13, 6–8
Citation in format AMSBIB
\Bibitem{VedGeuIgn20}
\by M.~V.~Vedunova, K.~L.~Geut, A.~O.~Ignatova, S.~S.~Titov
\paper Refractive bijections in Steiner triples
\jour Prikl. Diskr. Mat. Suppl.
\yr 2020
\issue 13
\pages 6--8
\mathnet{http://mi.mathnet.ru/pdma481}
\crossref{https://doi.org/10.17223/2226308X/13/1}
Linking options:
  • https://www.mathnet.ru/eng/pdma481
  • https://www.mathnet.ru/eng/pdma/y2020/i13/p6
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024