Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2019, Issue 12, Pages 206–211
DOI: https://doi.org/10.17223/2226308X/12/58
(Mi pdma473)
 

Computational methods in discrete mathematics

On the recognition problem for algebraic threshold functions

S. V. Jenevsky, S. L. Melnikov, A. N. Shurupov

ФУМО ВО «Информационная безопасность», г. Москва
References:
Abstract: We prove the existence of recognition algorithm for algebraic Boolean threshold functions by calculating upper bounds of absolute values of modulo and coefficients of a linear form. The modulo bound looks like $(n+3)^{(n+5)/2}/2^{n+2}$ and the bound of algorithm complexity is O$(({{n}/{2}})^{n^2})$.
Keywords: recognition problem, algebraic threshold functions.
Bibliographic databases:
Document Type: Article
UDC: 512.55
Language: Russian
Citation: S. V. Jenevsky, S. L. Melnikov, A. N. Shurupov, “On the recognition problem for algebraic threshold functions”, Prikl. Diskr. Mat. Suppl., 2019, no. 12, 206–211
Citation in format AMSBIB
\Bibitem{JenMelShu19}
\by S.~V.~Jenevsky, S.~L.~Melnikov, A.~N.~Shurupov
\paper On the recognition problem for algebraic threshold functions
\jour Prikl. Diskr. Mat. Suppl.
\yr 2019
\issue 12
\pages 206--211
\mathnet{http://mi.mathnet.ru/pdma473}
\crossref{https://doi.org/10.17223/2226308X/12/58}
\elib{https://elibrary.ru/item.asp?id=41153935}
Linking options:
  • https://www.mathnet.ru/eng/pdma473
  • https://www.mathnet.ru/eng/pdma/y2019/i12/p206
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:149
    Full-text PDF :59
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024