Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2019, Issue 12, Pages 203–205
DOI: https://doi.org/10.17223/2226308X/12/57
(Mi pdma472)
 

Computational methods in discrete mathematics

On properties of the largest probability for difference transition under a random bijective group mapping

V. V. Vlasova, M. A. Pudovkina

Bauman Moscow State Technical University
References:
Abstract: We consider two finite groups $(G_1,\otimes)$, $(G_2, \odot)$ with binary operations $ \otimes$, $\odot$. In practice, $G_1$ and $G_2$ are usually equal to the additive group $(V_m, \oplus)$ of the $m$-dimensional vector space $V_m$ over $\mathrm{GF}(2)$ or the additive group $(\mathbb{Z}_{2^m}, \boxplus)$ of the residues ring $\mathbb{Z}_{2^m}$. Nonabelian group of order $2^m$ having a cyclic subgroup of index $2$ can be considered as the nearest one to the additive group $(\mathbb{Z}_{2^m}, \boxplus)$. These groups are the dihedral group $(D_{2^{(m-1)}}, \diamond)$ and the generalized quaternion group $(Q_{2^m}, \boxtimes)$. In differential technique and its generalizations, each bijective mapping is associated with the differences table. In this paper, for all $\otimes, \odot \in \{\oplus, \boxplus, \boxtimes, \diamond \}$, we experimentally study a random value ${q^{( \otimes , \odot )}}$ that is equal to $|G_1|{p^{( \otimes , \odot )}}$, where ${p^{( \otimes , \odot )}}$ is the largest element of the differences table corresponding to a random mapping $s: G_1 \to G_2$. We consider randomly chosen bijective mappings as well as real S-boxes. As for all $\otimes, \odot \in \{\oplus, \boxplus, \boxtimes, \diamond \}$, we compute ${q^{( \otimes , \odot )}}$ for $S$-boxes of ciphers Aes, Anubis, Belt, Crypton, Fantomas, iScream, Kalyna, Khazad, Kuznyechik, Picaro, Safer, Scream, Zorro, Gift, Panda, Pride, Prince, Prost, Klein, Noekeon, Piccolo.
Keywords: differences table, differentially $d$-uniform mapping, $S$-boxes, generalized quaternion group, dihedral group.
Bibliographic databases:
Document Type: Article
UDC: 519.7
Language: Russian
Citation: V. V. Vlasova, M. A. Pudovkina, “On properties of the largest probability for difference transition under a random bijective group mapping”, Prikl. Diskr. Mat. Suppl., 2019, no. 12, 203–205
Citation in format AMSBIB
\Bibitem{VlaPud19}
\by V.~V.~Vlasova, M.~A.~Pudovkina
\paper On properties of the largest probability for difference transition under a random bijective group mapping
\jour Prikl. Diskr. Mat. Suppl.
\yr 2019
\issue 12
\pages 203--205
\mathnet{http://mi.mathnet.ru/pdma472}
\crossref{https://doi.org/10.17223/2226308X/12/57}
\elib{https://elibrary.ru/item.asp?id=41153934}
Linking options:
  • https://www.mathnet.ru/eng/pdma472
  • https://www.mathnet.ru/eng/pdma/y2019/i12/p203
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024