Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2019, Issue 12, Pages 126–129
DOI: https://doi.org/10.17223/2226308X/12/37
(Mi pdma452)
 

Mathematical Methods of Cryptography

Nonlinearity characteristics estimations for function compositions over vector spaces by the matrix-graph approach

M. D. Sapegina

National Engineering Physics Institute "MEPhI", Moscow
References:
Abstract: We expand the matrix-graph approach developed by V. M. Fomichev to assessing the nonlinearity characteristics of vector space transformations using ternary matrices over the multiplicative semigroup $\{0,1,2\}$ or digraphs with arcs labeled with the numbers from the set $\{0,1,2\}$. A digraph $\Gamma$ with the set of vertices $\{1,\ldots ,n\}$ is said to be $\langle2\rangle$-primitive if, for some natural $t$ for any $i,j\in\{1,\ldots ,n\}$, there is a path from $i$ to $j$ of length $t$ that passes through the arc labeled "$2$". The smallest such $t$ is called the $\langle2\rangle$-exponent of the digraph $\Gamma$ and is denoted by $\langle2\rangle$-$\exp\Gamma$. A transformation $g(x_1,\ldots ,x_n)$ of the vector space $V_n$ with coordinate functions $g_1(x_1,\ldots ,x_n),\ldots ,g_n(x_1,\ldots ,x_n)$ corresponds to the $n$-vertex digraph $\Gamma_\Theta(g)$, in which an arc $(i,j)$ is marked with the number $0$, or $1$, or $2$ if $g_j(x_1,\ldots ,x_n)$ depends on $x_i$ fictitiously, or linearly, or nonlinearly respectively, $1\le i,j\le n$. The transformation $g(x_1,\ldots ,x_n)$ is called totally nonlinear if the label of each arc of the digraph is "$2$". The transformation $g(x_1,\ldots ,x_n)$ is called $\langle2\rangle$-perfective if, for some natural $t$, all arcs of the digraph $\Gamma_\Theta(g^t)$ are marked with the number $2$. The smallest such $t$ is called an total nonlinearity index of the transformation $g(x_1,\ldots ,x_n)$ and is denoted by $\langle2\rangle$-$nlg$. It is proved that if in the labeled primitive digraph $\Gamma$ the label of each simple contour contains the number $2$ and $\exp\Gamma=n$, then the digraph $\Gamma$ is $\langle2\rangle$-primitive and $\langle2\rangle$-$\exp\Gamma=\exp\Gamma$. An estimate of the $\langle2\rangle$-exponent of the round function nonlinearity matrix $M$ of order $2n$ of block algorithms based on the Feistel network is obtained using the $\langle2\rangle$-exponent of the complication function nonlinearity matrix $\Phi$ of order $n$: $\langle2\rangle$-$\exp M\le\langle2\rangle$-$\exp\Phi+2$. These results decrease the complexity of calculating the total nonlinearity index for some transformations $g$. Algorithms for recognition of the total nonlinearity of the transformation $g(x_1,\ldots ,x_n)$ and estimates of $\langle2\rangle$-$nlg$ index are presented. For random transformations, the average complexity (number of elementary operations) does not exceed $2\gamma(\gamma+1)\log8n$ where $\langle2\rangle$-$nlg=\gamma$ and the elementary operation is the computation of any function on any input set. The algorithm was applied to obtain exact values of $\langle2\rangle$-$nlg$ of round substitutions $g$ of the algorithms DES and Magma, the values $5$ and $6$, respectively, were obtained.
Keywords: nonlinearity matrix of function, $\langle2\rangle$-primitive matrix (digraph), $\langle2\rangle$-exponent of the matrix (digraph), total nonlinearity index.
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: M. D. Sapegina, “Nonlinearity characteristics estimations for function compositions over vector spaces by the matrix-graph approach”, Prikl. Diskr. Mat. Suppl., 2019, no. 12, 126–129
Citation in format AMSBIB
\Bibitem{Sap19}
\by M.~D.~Sapegina
\paper Nonlinearity characteristics estimations for function compositions over vector spaces by the matrix-graph approach
\jour Prikl. Diskr. Mat. Suppl.
\yr 2019
\issue 12
\pages 126--129
\mathnet{http://mi.mathnet.ru/pdma452}
\crossref{https://doi.org/10.17223/2226308X/12/37}
\elib{https://elibrary.ru/item.asp?id=41153899}
Linking options:
  • https://www.mathnet.ru/eng/pdma452
  • https://www.mathnet.ru/eng/pdma/y2019/i12/p126
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:133
    Full-text PDF :45
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024