Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2019, Issue 12, Pages 107–110
DOI: https://doi.org/10.17223/2226308X/12/33
(Mi pdma448)
 

Mathematical Methods of Cryptography

Evaluation of mixing characteristics for Merkle–Damgard hash functions

A. M. Koreneva

"Security Code", Moscow
References:
Abstract: The matrix-graph approach (MGA), which has been successfully applied to the evaluation of iterative block ciphers and key generators, is presented for the first time as a tool for estimating the mixing properties of hash algorithms. Feature of MGA application to hash functions is connected with the possibility of construction the mixing matrices which characterize dependence of the bits of the hash value on the bits of the input message. Mixing matrices of the order $512+n$ are constructed for hash functions MD4, MD5, SHA-1, SHA-256, where $n$ is the size of the digest produced by the compression function processing the $512$-bit block of the input message ($n=128$ for MD4 and MD5, $n=160$ for SHA-1 and $n=256$ for SHA-256). We calculate the local exponents of mixing matrices, i.e., for each matrix $M$, we obtain the smallest positive integer $\gamma$ such that for any natural $\tau \ge \gamma$ all the columns of $M^{\tau}$ with the numbers $513, 514, \ldots, 512+n$ are positive. The values of the local exponents are the lower bounds for the number of iterations, after which each bit of the output hash may essentially depend on all bits of the input message. The obtained values ($\gamma=21$ for MD4, MD5, SHA-256 and $\gamma=23$ for SHA-1) indirectly indicate the similar mixing properties of the considered hash algorithms despite the increase of block length and complexity of the compression function.
Keywords: hash functions, Merkle–Damgard structure, matrix-graph approach, mixing properties.
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: A. M. Koreneva, “Evaluation of mixing characteristics for Merkle–Damgard hash functions”, Prikl. Diskr. Mat. Suppl., 2019, no. 12, 107–110
Citation in format AMSBIB
\Bibitem{Kor19}
\by A.~M.~Koreneva
\paper Evaluation of mixing characteristics for Merkle--Damgard hash functions
\jour Prikl. Diskr. Mat. Suppl.
\yr 2019
\issue 12
\pages 107--110
\mathnet{http://mi.mathnet.ru/pdma448}
\crossref{https://doi.org/10.17223/2226308X/12/33}
\elib{https://elibrary.ru/item.asp?id=41153892}
Linking options:
  • https://www.mathnet.ru/eng/pdma448
  • https://www.mathnet.ru/eng/pdma/y2019/i12/p107
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:201
    Full-text PDF :81
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024