Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2019, Issue 12, Pages 95–98
DOI: https://doi.org/10.17223/2226308X/12/30
(Mi pdma445)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mathematical Methods of Cryptography

On the argument of the absence of properties of a random oracle for some cryptographic hash functions

I. A. Gribanova, A. A. Semenov

Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences, Irkutsk
Full-text PDF (605 kB) Citations (2)
References:
Abstract: The paper presents new preimage attacks related to the class of algebraic attacks on hash functions $\mathrm{MD4}$-$k$, $39 \leq k \leq 48$. Hash function $\mathrm{MD4}$-$k$ consists of first $k$ steps used in $\mathrm{MD4}$ algorithm. To solve the corresponding systems of algebraic equations, SAT-solvers are used. The proposed attacks demonstrate that $\mathrm{MD4}$-$k$ functions are not random oracles. More precisely, we estimate the fraction of easy-invertible outputs of these functions and show that even for full-round version of hash function $\mathrm{MD4}$, the obtained fraction is very big. To construct such estimations with each function of the kind $\mathrm{MD4}$-$k$, we associate a special function, which input length is much smaller than $512$. In most cases the preimage finding problem for such function is significantly simpler than the original one. We show that any value of the special function is the value of function $\mathrm{MD4}$-$k$ and estimate the fraction of these values in $\{0,1\}^{128}$. This approach allows us to obtain an estimation for the fraction of easy-invertible outputs of original hash function $\mathrm{MD4}$-$k$.
Keywords: cryptographic hash functions, preimage attack on hash functions, $\mathrm{MD4}$, $\mathrm{MD4}$-$39$, SAT.
Funding agency Grant number
Russian Science Foundation 16-11-10046
Ministry of Education and Science of the Russian Federation СП-3545.2019.5
Bibliographic databases:
Document Type: Article
UDC: 519.7
Language: Russian
Citation: I. A. Gribanova, A. A. Semenov, “On the argument of the absence of properties of a random oracle for some cryptographic hash functions”, Prikl. Diskr. Mat. Suppl., 2019, no. 12, 95–98
Citation in format AMSBIB
\Bibitem{GriSem19}
\by I.~A.~Gribanova, A.~A.~Semenov
\paper On the argument of the absence of properties of a random oracle for some cryptographic hash functions
\jour Prikl. Diskr. Mat. Suppl.
\yr 2019
\issue 12
\pages 95--98
\mathnet{http://mi.mathnet.ru/pdma445}
\crossref{https://doi.org/10.17223/2226308X/12/30}
\elib{https://elibrary.ru/item.asp?id=41153889}
Linking options:
  • https://www.mathnet.ru/eng/pdma445
  • https://www.mathnet.ru/eng/pdma/y2019/i12/p95
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:140
    Full-text PDF :38
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024