|
Discrete Functions
On the relationship between nonlinear and differential properties of vectorial Boolean functions
A. V. Miloserdov Novosibirsk State University, Mechanics and Mathematics Department
Abstract:
The relations between the linear approximation table (LAT) and the differences distribution table (DDT) of the vectorial Boolean functions are investigated. Let F be a function from Fn2 into Fn2. DDT of F is a 2n×2n table defined by DDT(a,b)=|{x∈Fn2|F(x)⊕F(x⊕a)=b}| for each a,b∈Fn2. LAT of F is a 2n×2n table, in the cell (v,u) of which the squared Walsh — Hadamard coefficient
is stored. It is proved that the presence of coinciding rows in DDT and LAT is an invariant under affine equivalence as well as under EA-equivalence for normalized DDT and LAT. It is hypothesized that if all rows in the LAT (DDT) of a vectorial Boolean function F are pairwise different, then all rows in its DDT (LAT) are also pairwise different. This hypothesis is checked for functions in a small number of variables and for known APN functions in not more than 10 variables.
Keywords:
APN function, AB function, differential uniformity, nonlinearity.
Citation:
A. V. Miloserdov, “On the relationship between nonlinear and differential properties of vectorial Boolean functions”, Prikl. Diskr. Mat. Suppl., 2019, no. 12, 60–62
Linking options:
https://www.mathnet.ru/eng/pdma433 https://www.mathnet.ru/eng/pdma/y2019/i12/p60
|
Statistics & downloads: |
Abstract page: | 182 | Full-text PDF : | 110 | References: | 23 |
|