Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2019, Issue 12, Pages 36–41
DOI: https://doi.org/10.17223/2226308X/12/10
(Mi pdma425)
 

Theoretical Foundations of Applied Discrete Mathematics

Properties of strong dependance $n$-ary semigroups

A. V. Cheremushkin

Research Institute "Kvant", Moscow
References:
Abstract: The paper presents results about the structure of strongly dependent $n$-ary operations on a finite set that satisfy the associativity identities for the $n$-ary semigroup, $n\ge 3$. It is shown that their description is reduced to the description of binary semigroups with a unit satisfying certain properties. The information is based on the proof of analogues of the Post and Gluskin–Hossu theorems for the case of strongly dependent operations. It is also proved that any strong dependence binary semigroup is a monoid. A description of autotopy groups of strongly dependent $n$-ary semigroup is also given.
Keywords: $n$-ary semigroup, strongly dependent function, autotopy group.
Bibliographic databases:
Document Type: Article
UDC: 512.538
Language: Russian
Citation: A. V. Cheremushkin, “Properties of strong dependance $n$-ary semigroups”, Prikl. Diskr. Mat. Suppl., 2019, no. 12, 36–41
Citation in format AMSBIB
\Bibitem{Che19}
\by A.~V.~Cheremushkin
\paper Properties of strong dependance $n$-ary semigroups
\jour Prikl. Diskr. Mat. Suppl.
\yr 2019
\issue 12
\pages 36--41
\mathnet{http://mi.mathnet.ru/pdma425}
\crossref{https://doi.org/10.17223/2226308X/12/10}
\elib{https://elibrary.ru/item.asp?id=41153858}
Linking options:
  • https://www.mathnet.ru/eng/pdma425
  • https://www.mathnet.ru/eng/pdma/y2019/i12/p36
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:149
    Full-text PDF :42
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024